scholarly journals Land use scenarios simulation based on the CLUE-S model of the Lijiang River Basin in Guilin, China

Author(s):  
Qingwen Jin ◽  
Guang Liu ◽  
Lei Li ◽  
Chengxin He ◽  
Yuqing Huang ◽  
...  
2013 ◽  
Vol 33 (3) ◽  
pp. 985-997 ◽  
Author(s):  
冯仕超 FENG Shichao ◽  
高小红 GAO Xiaohong ◽  
顾娟 GU Juan ◽  
亢健 KANG Jian ◽  
郭丽峰 GUO Lifeng ◽  
...  

CATENA ◽  
2017 ◽  
Vol 158 ◽  
pp. 286-297 ◽  
Author(s):  
Guang Liu ◽  
Qingwen Jin ◽  
Jingyi Li ◽  
Lei Li ◽  
Chengxin He ◽  
...  

2017 ◽  
Vol 47 (2) ◽  
pp. 95-112 ◽  
Author(s):  
Peter Rončák ◽  
Evelin Lisovszki ◽  
Ján Szolgay ◽  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
...  

AbstractThe effects of land use management practices on surface runoff are evident on a local scale, but evidence of their impact on the scale of a watershed is limited. This study focuses on an analysis of the impact of land use changes on the flood regime in the Myjava River basin, which is located in Western Slovakia. The Myjava River basin has an area of 641.32 km2and is typified by the formation of fast runoff processes, intensive soil erosion, and muddy floods. The main factors responsible for these problems with flooding and soil erosion are the basin’s location, geology, pedology, agricultural land use, and cropping practices. The GIS-based, spatially distributed WetSpa rainfall-runoff model was used to simulate mean daily discharges in the outlet of the basin as well as the individual components of the water balance. The model was calibrated based on the period between 1997 and 2012 with outstanding results (an NS coefficient of 0.702). Various components of runoff (e.g., surface, interflow and groundwater) and several elements of the hydrological balance (evapotranspiration and soil moisture) were simulated under various land use scenarios. Six land use scenarios (‘crop’, ‘grass’, ‘forest’, ‘slope’, ‘elevation’ and ‘optimal’) were developed. The first three scenarios exhibited the ability of the WetSpa model to simulate runoff under changed land use conditions and enabled a better adjustment of the land use parameters of the model. Three other “more realistic” land use scenarios, which were based on the distribution of land use classes (arable land, grass and forest) regarding permissible slopes in the catchment, confirmed the possibility of reducing surface runoff and maximum discharges with applicable changes in land use and land management. These scenarios represent practical, realistic and realizable land use management solutions and they could be economically implemented to mitigate soil erosion processes and enhance the flood protection measures in the Myjava River basin.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1021
Author(s):  
Peng Hu ◽  
Tijiu Cai ◽  
Fengxiang Sui ◽  
Liangliang Duan ◽  
Xiuling Man ◽  
...  

To study the response of runoff to extreme changes in land use, the Soil and Water Assessment Tool (SWAT) model was used to construct historical, extreme, and future scenarios for several major landscape types in a permafrost region of northeastern China. The results show that the SWAT model is applicable in the Tahe River Basin; forestlands, shrublands, wetlands, and grasslands are the main land-use types in this basin, and the transfers among them from 1980–2015 have impacted runoff by less than 5%. Under extreme land use-change scenarios, the simulated runoff decreased from grasslands, to wetlands, shrublands, and finally, forestlands. The conversion of extreme land-use scenarios produces different hydrological effects. When forestland is converted to grassland, runoff increases by 25.32%, when forestland is converted to wetland, runoff increases by 13.34%, and the conversion of shrubland to forestland reduces runoff by 13.25%. In addition, the sensitivity of runoff to different land-use changes was much greater during flood seasons than in dry seasons. Compared to the reference year of 2015, the annual simulated runoff under the two future land-use scenarios (shrublands to forestlands and shrublands to wetland) was less. Also, both future land-use scenarios showed effects to decrease flooding and increased dryness, This study provided important insight into the integrated management of land use and water resources in the Tahe River Basin and the permafrost region of northeastern China.


Sign in / Sign up

Export Citation Format

Share Document