scholarly journals Convective heat transfer study on the spiral finned tube heat exchanger under various fin pitch arrangements

Author(s):  
Ahmad Syuhada ◽  
Dedi Afandi ◽  
Sarwo Edhy Sofyan
2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


1990 ◽  
Vol 112 (1) ◽  
pp. 64-70 ◽  
Author(s):  
S. A. Idem ◽  
A. M. Jacobi ◽  
V. W. Goldschmidt

The effects upon the performance of an air-to-water copper finned-tube crossflow heat exchanger due to condensation on the outer surface are considered. A four-tube, two-pass heat exchanger was tested over a Reynolds number range (based on hydraulic diameter) from 400 to 1500. The coil was operated both in overall parallel and overall counterflow configurations. Convective heat and mass transfer coefficients are presented as plots of Colburn j-factor versus Reynolds number. Pressure losses are, similarly, presented as plots of the friction factor versus Reynolds number. Enhancement of sensible heat transfer due to the presence of a condensate film is also considered.


Cooling is essential to maintain the required efficiency and reliability in a wide range of products such as automobiles, high and medium cogeneration power plants, high power laser systems. Part of heat load amplification and the heat fluxes induced by more industrial products, cooling is one of the industry's main technical problems such as manufacturing, transport and in microelectronics. The main content of the paper is to study the LMTD (logarithmic mean temperature difference), Heat transfer Coefficient and Effectiveness (ε) of combined heat exchanger using acetone/water mixture as a function of a different mass flow rates. This paper deals with the experimental study on the three different heat exchangers like tube in tube, shell and tube and combined (tube in tube & shell and tube) heat exchanger with acetone/water mixture mostly to check the elevation of convective heat transfer coefficient, LMTD, effectiveness, overall heat transfer coefficient. This experimentation work give a summary of, the experimental study of the forced convective heat transfer and flow characteristics of a 25% acetone consisting of 75% water. Acetone/water mixture flow in to a parallel, counter direction in the tube in tube, shell and tube heat exchanger and combined heat exchanger under laminar flow conditions. A maximum increase in the coefficient of convective heat transfer of 58.4% and an effectiveness of 48.5% is recorded. However, combined heat exchanger provides better heat transfer characteristics than parallel and counter flow tubular and shell and tube heat exchanger due to the multi-pass flow of acetone/water. The overall heat transfer coefficients, Reynolds number, logarithmic mean temperature difference, the effectiveness of the acetone/water are also studied and the results are presented in tabular columns and figures.


Sign in / Sign up

Export Citation Format

Share Document