scholarly journals Anisotropic rock permeability evolution model based on wing crack propagation after dynamic load testing

Author(s):  
Diyuan Li ◽  
Quanqi Zhu ◽  
Wenjian Wang
Geotecnia ◽  
2015 ◽  
Vol 135 ◽  
pp. 89-113
Author(s):  
Jean Felix Cabette ◽  
◽  
<br>Heloisa Helena Silva Gonçalves ◽  
<br>Fernando Antônio Marinho ◽  
◽  
...  

Author(s):  
Chao Xu ◽  
Mingyue Cao ◽  
Kai Wang ◽  
Qiang Fu ◽  
Liangliang Qin

2021 ◽  
Vol 9 (4) ◽  
pp. 577-587
Author(s):  
Wei Liu ◽  
Deyao Wu ◽  
Hao Xu ◽  
Xiangyu Chu ◽  
Wei Zhao ◽  
...  

Author(s):  
Kevin N. Flynn ◽  
Bryan A. McCabe

Driven cast-in-situ (DCIS) piles are classified as large displacement piles. However, the use of an oversized driving shoe introduces additional complexities influencing shaft resistance mobilisation, over and above those applicable to preformed displacement piles. Therefore, several design codes restrict the magnitude of shaft resistance in DCIS pile design. In this paper, a series of dynamic load tests was performed on the temporary steel driving tubes during DCIS pile installation at three UK sites. The instrumented piles were subsequently subjected to maintained compression load tests to failure. The mobilised shear stresses inferred from the dynamic tests during driving were two to five times smaller than those on the as-constructed piles during maintained load testing. This was attributed to soil loosening along the tube shaft arising from the oversized base shoe. Nevertheless, the radial stress reductions appear to be reversible by the freshly-cast concrete fluid pressures which provide lower-bound estimates of radial total stress inferred from the measured shear stresses during static loading. This recovery in shaft resistance is not recognised in some European design practices, resulting in conservative design lengths. Whilst the shaft resistance of DCIS piles was underpredicted by the dynamic load tests, reasonable estimates of base resistance were obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xizhen Sun ◽  
Fanbao Meng ◽  
Ce Zhang ◽  
Xucai Zhan ◽  
He Jiang

The geometric distribution of initial damages has a great influence on the strength and progressive failure characteristics of the fractured rock mass. Initial damages of the fractured rock were simplified as parallel cracks in different geometric distributions, and then, the progressive failure and acoustic emission (AE) characteristics of specimens under the uniaxial compression loading were analyzed. The red sandstone (brittle materials) specimens with the parallel preexisting cracks by water jet were used in the tests. The energy peak and stress attenuation induced by the energy release of crack initiation were intuitively observed in the test process. Besides, three modes of rock bridge coalescence were obtained, and wing crack was the main crack propagation mode. The wing crack and other cracks were initiated in different loading stages, which were closely related to the energy level of crack initiation. The propagation of wing crack (stable crack) consumed a large amount of energy, and then, the propagation of shear crack, secondary crack, and anti-wing crack (unstable crack) was inhibited. The relationship between the crack propagation mode and the geometric distribution of existing cracks in the specimen was revealed. Meanwhile, the strength characteristic and failure mode of fractured rock with the different geometric distributions of preexisting crack were also investigated. The energy evolution characteristics and crack propagation were also analyzed by numerical modeling (PFC2D).


2021 ◽  
Vol 18 (4) ◽  
pp. 27-39
Author(s):  
Xing Li ◽  
Shuxin Liu ◽  
Yuhang Zhu ◽  
Yingle Li

Author(s):  
Yuxin Liu ◽  
Zili Zhang ◽  
Chao Gao ◽  
Yuheng Wu ◽  
Tao Qian

Sign in / Sign up

Export Citation Format

Share Document