scholarly journals Progressive Failure and Acoustic Emission Characteristics of Red Sandstone with Different Geometry Parallel Cracks under Uniaxial Compression Loading

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xizhen Sun ◽  
Fanbao Meng ◽  
Ce Zhang ◽  
Xucai Zhan ◽  
He Jiang

The geometric distribution of initial damages has a great influence on the strength and progressive failure characteristics of the fractured rock mass. Initial damages of the fractured rock were simplified as parallel cracks in different geometric distributions, and then, the progressive failure and acoustic emission (AE) characteristics of specimens under the uniaxial compression loading were analyzed. The red sandstone (brittle materials) specimens with the parallel preexisting cracks by water jet were used in the tests. The energy peak and stress attenuation induced by the energy release of crack initiation were intuitively observed in the test process. Besides, three modes of rock bridge coalescence were obtained, and wing crack was the main crack propagation mode. The wing crack and other cracks were initiated in different loading stages, which were closely related to the energy level of crack initiation. The propagation of wing crack (stable crack) consumed a large amount of energy, and then, the propagation of shear crack, secondary crack, and anti-wing crack (unstable crack) was inhibited. The relationship between the crack propagation mode and the geometric distribution of existing cracks in the specimen was revealed. Meanwhile, the strength characteristic and failure mode of fractured rock with the different geometric distributions of preexisting crack were also investigated. The energy evolution characteristics and crack propagation were also analyzed by numerical modeling (PFC2D).

2007 ◽  
Vol 353-358 ◽  
pp. 2353-2356 ◽  
Author(s):  
Y.S.H. Guo ◽  
R.H.C. Wong ◽  
K.T. Chau ◽  
Wei Shen Zhu ◽  
Shu Cai Li

A number of instability problems in rock engineering projects are caused by crack propagation. However, crack growth mechanisms from 3-dimentional flaw are not fully understood, in particular for 3-D flaw case with varied dipping angle. This study focuses on 3-D surface flaw using real rock specimens containing a flaw with varied inclination angle α from axial loading and dipping angle γ from specimen surface under uniaxial compression. Acoustic emission technique was used for tracing the initiation and growth of micro-cracks inside of specimen. It was found that crack growth process is affected by the dipping angle γ of the 3-D flaw. When dipping angle γ ≠ 90º, the thickness of rock above the flaw plane is thinner than that of below the flaw plane. As a result, compressive crack and wing crack initiated easily from the thinner flaw tips. And, the normalized stress for crack initiation σi /σc, AE events and the AE energy for crack growth decreases with the dipping angle γ. However, for γ = 90º, the thickness of rock above and below of the flaw tips is the same, it was observed that anti-wing crack (crack growth direction opposite to wing crack) initiated first at a certain place away from the flaw tips, then wing crack and compressive crack emerged at the late stage. For this case, the stress σi /σc, AE events and the AE energy for crack initiation and propagation are at a high value. Thus, for rock mass contains flaws geometry with small dipping angle, some problems of crack propagation may be induced easily during excavation.


2017 ◽  
Vol 47 (3) ◽  
pp. 59-80 ◽  
Author(s):  
Taoying Liu ◽  
Ping Cao

AbstractThe behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xin Yang ◽  
Xiangguo Zeng ◽  
Chuanjin Pu ◽  
Dingjun Xiao

In order to study the dynamic crack propagation law in fissured rock under the different fillings, a borehole with 7 mm diameter was processed in the center of a polymethyl methacrylate (PMMA) specimen. The preexisting fissure with different angles (θ = 0°, 45°, and 90°) and different distances (L = 20, 30, 40, 50, and 60 mm) was prefabricated around the borehole. Air, soil, and water were employed as fillings in the fissure, respectively. The experiment of explosive loading was carried out by a single detonator, and the dynamic crack propagation process of the experimental specimens was simulated by nonlinear dynamics software AUTODYN. The results show that the blast-induced cracks are the most favorable and unfavorable to propagate when θ = 0° and θ = 45°, respectively. The length of the far-end wing crack decreases with the increase of the distance L, and the length of the far-end wing crack in the air-filled specimens is larger than those in soil-filled and water-filled specimens. The damage-pressure curve of the far-end wing crack initiation point shows “S”-type change, and the damage-pressure curve shows two obvious damage evolution processes of initial nonlinear and later linear stages. With the increase of the angle, the distance from the borehole to the crack initiation point decreases and the compressive stress wave peak value should increase, but the tensile force peak value decreases. Meanwhile, the relationships between pressure and average velocity of the initiation point and L, θ, and fillings are established, respectively. The numerical simulation agrees with the experimental results well. It can be seen that the fillings types, angle, and distance have a mutual restraint relationship with the reflected and absorbed stress wave energy. The phenomenon of crack propagation under different fillings can be explained well from the viewpoint of discontinuity degree and stress wave energy, which reveals the general law of blast-induced crack propagation.


1990 ◽  
Vol 5 (1) ◽  
pp. 206-217 ◽  
Author(s):  
A. K. Maji ◽  
C. Ouyang ◽  
S. P. Shah

Recently acoustic emission (AE) techniques have been used to study crack propagation in materials. The application of these techniques to heterogeneous, quasi-brittle materials such as concrete requires a better understanding of how the signal generated from a microfracture is transformed due to wave propagation and due to the transducer response. In this study, piezoelectric transducers were calibrated using displacement transducers. The validity of an elastodynamic Green's function approach was examined for cement-based materials. The acoustic emission source was characterized using moment tensor analysis. Acoustic emission measurements were analyzed for center-cracked-plate specimens of mortar and concrete. It was observed that, as expected, the dominant mode of cracking was mode I (tensile). However, mode II (shear) and mixed mode cracks also occurred, perhaps due to grain boundary sliding and interface debonding. Microfractures appear to localize prior to critical crack propagation. Mode I cracks generally required more energy release than mode II and a smaller inclusion provided a stronger interface bond than the larger ones.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guojun Liu ◽  
Yuan Zhao ◽  
Yugang Cheng

This paper examines the fracture propagation problems of supercritical carbon fracturing in low permeability shale. Acoustic emission monitoring and computerized tomography (CT) scanning methods were used to study the influence of initial stress ratios on crack initiation and propagation crack in fracturing experiments. The results show that crack initiation pressure and crack morphology are very different under different stress conditions. Under the condition of constant confining pressure, when the initial stress ratio λ = 1, cracks are mainly in a horizontal direction; while for an initial stress ratio of λ < 1, cracks are mainly in a vertical direction. With the decrease of λ, crack initiation pressure, reopening pressure, and fracturing liquid volume also decrease, and crack propagation is not as obvious. According to CT scanning results, the crack propagation direction is the same as the maximum principal stress, and fewer cracks are initiated with a smaller initial stress ratio. Based on the acoustic emission characteristics, the fracturing process (including crack initiation, propagation, and closure), can be divided into three stages: 1) the pressure accumulation in the wellbore, 2) Pump Closure; and 3) crack reopening. This study provides the basis for a reasonable selection of shale gas fracturing formation and geo-sequestration of greenhouse gas CO2.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Rongchao Xu

The inclination angle of the flaw has an important effect on the cracking behavior of fractured rock. The influence of the inclination angle of closed flaw on the strength, cracking behavior, failure modes, and AE behaviors of specimens has not been investigated thoroughly. Uniaxial compression tests were conducted on gypsum samples containing a single closed flaw with different inclination angles. The flaw orientation influence on strength, cracking mechanism, failure modes, and AE behaviors was analyzed in detail. With the increase of the flaw inclination angle from 30° to 75°, the mechanical parameters such as elastic modulus, wing crack initiation strength, and uniaxial compression strength decrease first and then increase and reach the minimum value at 45°. The wing crack initiation angle decreases from 65° to 35° as the flaw inclination angle increases from 30° to 75°. The wing crack is more difficult to initiate from the tips of closed flaws compared with that of open flaws. The secondary cracks are initially shear cracks and propagate in a stable manner. However,when the axial stress reaches the peak strength, the secondary crack propagates unstably, which results in the macroscopic failure of the sample. The AE behaviors of samples are also analyzed during the uniaxial compression test. The experimental results are expected to provide helpful guidance for safe construction under fractured rock mass condition.


2017 ◽  
Vol 17 (3) ◽  
pp. 423-433 ◽  
Author(s):  
Davide Crivelli ◽  
John McCrory ◽  
Stefano Miccoli ◽  
Rhys Pullin ◽  
Alastair Clarke

The phenomenon of fatigue in gears at the tooth root can be a cause of catastrophic failure if not detected in time. Where traditional low-frequency vibration may help in detecting a well-developed crack or a completely failed tooth, a system for early detection of the nucleation and initial propagation of a fatigue crack can be of great use in condition monitoring. Acoustic emission is a potentially suitable technique, as it is sensitive to the higher frequencies generated by crack propagation and is not affected by low-frequency noise. In this article, a static gear pair is tested where a crack was initiated at a tooth root. Continuous acoustic emission was periodically recorded throughout the test. Data were processed in multiple ways to support the early detection of crack initiation. Initially, traditional feature–based acoustic emission was employed. This showed qualitative results indicating fracture initiation around 8000 cycles. A rolling cross-correlation was then employed to compare two given system states, showing a sensitivity to large changes towards the final phases of crack propagation. A banded fast Fourier transform approach showed that the 110- to 120-kHz band was sensitive to the observed crack initiation at 8000 cycles, and to the later larger propagation events at 22,000 cycles. Two advanced data processing techniques were then used to further support these observations. First, a technique based on Chebyshev polynomial decomposition was used to reduce each wavestream data to a vector of 25 descriptors; these were used to track the system deviation from a baseline state and confirmed the previously observed deviations with a higher sensitivity. Further confirmation came from the analysis of wavestream entropy content, providing support from multiple data analysis techniques on the feasibility of system state tracking using continuous acoustic emission.


Author(s):  
Yujian Ren ◽  
Yuanzhe Dong ◽  
Jingxiang Li ◽  
Fei Zhao ◽  
Shengdun Zhao ◽  
...  

Compared to the traditional cropping technology, low-cycle fatigue cropping can reduce load and improve cross-section quality. Geometric factors of V-shaped notch and processing parameters (such as load amplitude and load frequency) influence the cropping efficiency and section quality. By changing the factors, the sufficient efficiency of cropping and quality of cross-section get together. However, the influences of material defects, geometric parameters, loading frequency and other factors are different in each stage of the whole cropping process. If the effects of the parameters on the each stage of cropping process are clear, the higher productivity and the better cross-section quality will be obtained by applying suitable parameter on each stage of cropping process. To investigate the effects of eccentric ratio on each stage of low –cycle fatigue cropping process, a suitable monitoring method is needed. This study proposes acoustic emission (AE) technique to detect the low-cycle fatigue cropping process of 16 Mn eccentric bar (The bar prefabricated eccentric notches. The prefabricated notch improve the efficiency of cropping). The parameters of signals such as counts and kurtosis during the low–cycle fatigue process are obtained. According to the counts changes over time, the process of the 16 Mn metal bar cropping can be divided into three stages: the crack initiation stage, the crack propagation stage, and the fracture stage. Based on the cumulative counts, the eccentric ratio’s influence on the time of each cropping process stage is obtained. The time of the crack initiation stage and the final fracture stage doesn’t increase with the eccentric ratio. The time of the propagation stage influenced by the eccentric ratio greatly. Besides, the eccentric ratio’s influence on the cross-section quality is studied by using an advanced optical microscope system. The cross-section quality was influenced by the eccentric ratio significantly. The results of the paper indicate the acoustic emission (AE) monitoring technique is a useful method to detect the process of low-cycle fatigue cropping. Especially, it provide effective information to investigate the effects of the notch eccentric ratio during the low-cycle fatigue cropping process. The eccentric ratio’s effects on each stage of low-cycle fatigue cropping process offer guidance to improve low-stress fatigue cropping efficiency and cross-section quality.


Sign in / Sign up

Export Citation Format

Share Document