scholarly journals Pore pressure prediction using probabilistic neural network: case study of South Sumatra Basin

Author(s):  
A Haris ◽  
R J Sitorus ◽  
A Riyanto
2010 ◽  
Author(s):  
Yuhong Xie ◽  
Jun Cai ◽  
Ling Xia Zhen ◽  
Hong Tian ◽  
Yan Hua Li ◽  
...  

2021 ◽  
Vol 73 (02) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200577, “Applications of Artificial Neural Networks for Seismic Facies Classification: A Case Study From the Mid-Cretaceous Reservoir in a Supergiant Oil Field,” by Ali Al-Ali, Karl Stephen, SPE, and Asghar Shams, Heriot-Watt University, prepared for the 2020 SPE Europec featured at the 82nd EAGE Conference and Exhibition, originally scheduled to be held in Amsterdam, 1-3 December. The paper has not been peer reviewed. Facies classification using data from sources such as wells and outcrops cannot capture all reservoir characterization in the interwell region. Therefore, as an alternative approach, seismic facies classification schemes are applied to reduce the uncertainties in the reservoir model. In this study, a machine-learning neural network was introduced to predict the lithology required for building a full-field Earth model for carbonate reservoirs in southern Iraq. The work and the methodology provide a significant improvement in facies classification and reveal the capability of a probabilistic neural network technique. Introduction The use of machine learning in seismic facies classification has increased gradually during the past decade in the interpretation of 3D and 4D seismic volumes and reservoir characterization work flows. The complete paper provides a literature review regarding this topic. Previously, seismic reservoir characterization has revealed the heterogeneity of the Mishrif reservoir and its distribution in terms of the pore system and the structural model. However, the main objective of this work is to classify and predict the heterogeneous facies of the carbonate Mishrif reservoir in a giant oil field using a multilayer feed-forward network (MLFN) and a probabilistic neural network (PNN) in nonlinear facies classification techniques. A related objective was to find any domain-specific causal relationships among input and output variables. These two methods have been applied to classify and predict the presence of different facies in Mishrif reservoir rock types. Case Study Reservoir and Data Set Description. The West Qurna field is a giant, multibillion-barrel oil field in the southern Mesopotamian Basin with multiple carbonate and clastic reservoirs. The overall structure of the field is a north/south trending anticline steep on the western flank and gentle on the eastern flank. Many producing reservoirs developed in this oil field; however, the Mid- Cretaceous Mishrif reservoir is the main producing reservoir. The reservoir consists of thick carbonate strata (roughly 250 m) deposited on a shallow water platform adjacent to more-distal, deeper-water nonreservoir carbonate facies developing into three stratigraphic sequence units in the second order. Mishrif facies are characterized by a porosity greater than 20% and large permeability contrast from grainstones to microporosity (10-1000 md). The first full-field 3D seismic data set was achieved over 500 km2 during 2012 and 2013 in order to plan the development of all field reservoirs. A de-tailed description of the reservoir has been determined from well logs and core and seismic data. This study is mainly based on facies log (22 wells) and high-resolution 3D seismic volume to generate seismic attributes as the input data for the training of the neural network model. The model is used to evaluate lithofacies in wells without core data but with appropriate facies logs. Also, testing was carried out in parallel with the core data to verify the results of facies classification.


2005 ◽  
Author(s):  
Juan C. Clarembaux ◽  
Marcelo Giusso ◽  
Roberto Gullco ◽  
Daniel Mujica ◽  
Carlos Carabeo Miranda ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 33
Author(s):  
RAKA SUDIRA WARDANA ◽  
Meredita Susanty ◽  
Hapsoro B.W

Pore pressure is a critical parameter in designing drilling operations. Inaccurate pore pressure data can cause problems, even incidents in drilling operations. Pore pressure data can be obtained from direct measurement methods or estimated using indirect measurement methods such as empirical models. In the oil and gas industry, most of the time, direct measurement is only taken in certain depth due to relatively high costs. Hence, empirical models are commonly used to fill in the gap. However, most of the empirical models highly depend on specific basins or types of formation. Furthermore, to predict pore pressure using empirical models accurately requires a good understanding in determining Normal Compaction Trendline. This proposed approach aims to find a more straightforward yet accurate method to predict pore pressure. Using Artificial Neural Network Model as an alternative method for pore pressure prediction based on logging data such as gamma-ray, density, and sonic log, the result shows a promising accuracy.


2021 ◽  
pp. 161-166
Author(s):  
Sami Hasan ◽  
Mays Yousif ◽  
Talib M. J. Al-Talib

This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.


Sign in / Sign up

Export Citation Format

Share Document