scholarly journals MRI Probabilistic Neural Network Screening System: a benign and malignant recognition case study

2021 ◽  
pp. 161-166
Author(s):  
Sami Hasan ◽  
Mays Yousif ◽  
Talib M. J. Al-Talib

This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.

Author(s):  
Seba Aziz Sahym

Given the circumstances of the countries in which wars, political instability, and other uncertainties are passing that make the atmosphere impure, which have caused many diseases, one of these diseases that has spread widely is cancer. Cancer is a very common disease, and many of them affect a person and lead him or her to death. Among these diseases, which have been common in recent years specifically the brain tumors that they need early diagnosis and do not cause the death of the person. Furthermore, many studies in the field of brain cancer detection have been done, but the best solution is still missing. Therefore, in this paper, a reliable method is proposed to detect brain tumors, extract its properties, and classify the tumor using Magnetic Resonance Imaging (MRI) through the artificial neural network.  In the proposed system, an essential part of image processing is the analysis and processing of digital images, especially to improve their quality, Bilateral Filter is used to improving image clarity and any image noise in this method preserves edges. After that, the distinctive properties of the image are extracted using the Histogram of Oriented Gradient (HOG) method. Thus, the extracted features are strong and can be classified as a Probabilistic Neural Network (PNN), this is what distinguishes our work from the previous works. The advantage obtained is granted to the PNN Classifier, which is used to train and test the accuracy of performance in perceiving the location of the tumour in MRI images of the brain accuracy as it resolves 99.5%.


2011 ◽  
Vol 189-193 ◽  
pp. 2042-2045 ◽  
Author(s):  
Shang Jen Chuang ◽  
Chiung Hsing Chen ◽  
Chien Chih Kao ◽  
Fang Tsung Liu

English letters cannot be recognized by the Hopfield Neural Network if it contains noise over 50%. This paper proposes a new method to improve recognition rate of the Hopfield Neural Network. To advance it, we add the Gaussian distribution feature to the Hopfield Neural Network. The Gaussian filter was added to eliminate noise and improve Hopfield Neural Network’s recognition rate. We use English letters from ‘A’ to ‘Z’ as training data. The noises from 0% to 100% were generated randomly for testing data. Initially, we use the Gaussian filter to eliminate noise and then to recognize test pattern by Hopfield Neural Network. The results are we found that if letters contain noise between 50% and 53% will become reverse phenomenon or unable recognition [6]. In this paper, we propose to uses multiple filters to improve recognition rate when letters contain noise between 50% and 53%.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2021 ◽  
Vol 73 (02) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200577, “Applications of Artificial Neural Networks for Seismic Facies Classification: A Case Study From the Mid-Cretaceous Reservoir in a Supergiant Oil Field,” by Ali Al-Ali, Karl Stephen, SPE, and Asghar Shams, Heriot-Watt University, prepared for the 2020 SPE Europec featured at the 82nd EAGE Conference and Exhibition, originally scheduled to be held in Amsterdam, 1-3 December. The paper has not been peer reviewed. Facies classification using data from sources such as wells and outcrops cannot capture all reservoir characterization in the interwell region. Therefore, as an alternative approach, seismic facies classification schemes are applied to reduce the uncertainties in the reservoir model. In this study, a machine-learning neural network was introduced to predict the lithology required for building a full-field Earth model for carbonate reservoirs in southern Iraq. The work and the methodology provide a significant improvement in facies classification and reveal the capability of a probabilistic neural network technique. Introduction The use of machine learning in seismic facies classification has increased gradually during the past decade in the interpretation of 3D and 4D seismic volumes and reservoir characterization work flows. The complete paper provides a literature review regarding this topic. Previously, seismic reservoir characterization has revealed the heterogeneity of the Mishrif reservoir and its distribution in terms of the pore system and the structural model. However, the main objective of this work is to classify and predict the heterogeneous facies of the carbonate Mishrif reservoir in a giant oil field using a multilayer feed-forward network (MLFN) and a probabilistic neural network (PNN) in nonlinear facies classification techniques. A related objective was to find any domain-specific causal relationships among input and output variables. These two methods have been applied to classify and predict the presence of different facies in Mishrif reservoir rock types. Case Study Reservoir and Data Set Description. The West Qurna field is a giant, multibillion-barrel oil field in the southern Mesopotamian Basin with multiple carbonate and clastic reservoirs. The overall structure of the field is a north/south trending anticline steep on the western flank and gentle on the eastern flank. Many producing reservoirs developed in this oil field; however, the Mid- Cretaceous Mishrif reservoir is the main producing reservoir. The reservoir consists of thick carbonate strata (roughly 250 m) deposited on a shallow water platform adjacent to more-distal, deeper-water nonreservoir carbonate facies developing into three stratigraphic sequence units in the second order. Mishrif facies are characterized by a porosity greater than 20% and large permeability contrast from grainstones to microporosity (10-1000 md). The first full-field 3D seismic data set was achieved over 500 km2 during 2012 and 2013 in order to plan the development of all field reservoirs. A de-tailed description of the reservoir has been determined from well logs and core and seismic data. This study is mainly based on facies log (22 wells) and high-resolution 3D seismic volume to generate seismic attributes as the input data for the training of the neural network model. The model is used to evaluate lithofacies in wells without core data but with appropriate facies logs. Also, testing was carried out in parallel with the core data to verify the results of facies classification.


Author(s):  
Mridusmita Sharma ◽  
Rituraj Kaushik ◽  
Kandarpa Kumar Sarma

Speaker recognition is the task of identifying a person by his/her unique identification features or behavioural characteristics that are included in the speech uttered by the person. Speaker recognition deals with the identity of the speaker. It is a biometric modality which uses the features of the speaker that is influenced by one's individual behaviour as well as the characteristics of the vocal cord. The issue becomes more complex when regional languages are considered. Here, the authors report the design of a speaker recognition system using normal and telephonic Assamese speech for their case study. In their work, the authors have implemented i-vectors as features to generate an optimal feature set and have used the Feed Forward Neural Network for the recognition purpose which gives a fairly high recognition rate.


2012 ◽  
Vol 263-266 ◽  
pp. 3374-3377
Author(s):  
Hua Liang Wu ◽  
Zhen Dong Mu ◽  
Jian Feng Hu

In the application of the classification, neural networks are often used as a classification tool, In this paper, neural network is introduced on motor imagery EEG analysis, the first EEG Hjort conversion, and then the brain electrical signal is converted into the frequency domain, Finally, the fisher distance for feature extraction in the EEG analysis, identification of the study sample was 97 86% recognition rate is 80% of the test sample.


2018 ◽  
Vol 164 ◽  
pp. 01015
Author(s):  
Indar Sugiarto ◽  
Felix Pasila

Deep learning (DL) has been considered as a breakthrough technique in the field of artificial intelligence and machine learning. Conceptually, it relies on a many-layer network that exhibits a hierarchically non-linear processing capability. Some DL architectures such as deep neural networks, deep belief networks and recurrent neural networks have been developed and applied to many fields with incredible results, even comparable to human intelligence. However, many researchers are still sceptical about its true capability: can the intelligence demonstrated by deep learning technique be applied for general tasks? This question motivates the emergence of another research discipline: neuromorphic computing (NC). In NC, researchers try to identify the most fundamental ingredients that construct intelligence behaviour produced by the brain itself. To achieve this, neuromorphic systems are developed to mimic the brain functionality down to cellular level. In this paper, a neuromorphic platform called SpiNNaker is described and evaluated in order to understand its potential use as a platform for a deep learning approach. This paper is a literature review that contains comparative study on algorithms that have been implemented in SpiNNaker.


Sign in / Sign up

Export Citation Format

Share Document