scholarly journals The study on working fluids of airborne power generation system based on Rankine cycle by heat energy

Author(s):  
Yuan Guo
2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879407 ◽  
Author(s):  
Wei Liu ◽  
Xiaoyun Zhang ◽  
Ningbo Zhao ◽  
Chunying Shu ◽  
Shanke Zhang ◽  
...  

Intercooled cycle gas turbine has great potential in improving the output power because of the low energy consumption of high-pressure compressor. In order to more efficiently recovery and utilize the waste heat of the intercooled system, an organic Rankine cycle power generation system is developed to replace the traditional intercooled system in this study. Considering the effects of different kinds of organic working fluids, the thermodynamic performance of organic Rankine cycle power generation system is investigated in detail. On this basis, the sensitivity analyses of some key parameters are conducted to study the operating improvements of organic Rankine cycle power generation system. The results indicate that the integration of organic Rankine cycle and intercooled cycle gas turbine not only can be used for waste heat power generation but also increases the output power and efficiency of intercooled cycle gas turbine by selecting the organic working fluids of n-butane (R600), n-pentane (R601), toluene, and n-heptane. And compared to the others, organic Rankine cycle power generation system with toluene exhibits the best performance. The maximum enhancements of output power and thermal efficiency are 6.08% and 2.14%, respectively. Moreover, it is also concluded that both ambient temperatures and intercooled cycle gas turbine operating conditions are very important factors affecting the operating performances of organic Rankine cycle power generation system.


2019 ◽  
Vol 136 ◽  
pp. 03031
Author(s):  
Chen Xiaoqing ◽  
Jiang Weiting ◽  
Cao Xianchang ◽  
Zhang Li’ang ◽  
Chen Chi ◽  
...  

The initial simulation calculation of the ORC power generation system was carried out using the software Aspen Plus, and the simulation data matched with the design conditions were obtained. According to the specific structure of the evaporator and superheater in the ORC power generation system and the characteristics of the software Aspen EDR, a new simulation calculation method is proposed: structural simulation calculation method. The calculation method and the direct simulation calculation method are used to carry out simulation comparison to find out the regularity of the change of waste heat resources, and it is convenient to further analyze and control the ORC power generation system.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Yuping Wang ◽  
Lei Tang ◽  
Yiwu Weng

A low-temperature (<120 °C) solar organic Rankine cycle (ORC) power generation experimental facility is designed and built. The influence of light intensity on the system performance is investigated using the experimental facility. The results indicate that the system efficiency can reach 2.2%. The temperature of heat transfer fluid (HTF) decreases linearly with light intensity (I). However, both system efficiency and thermoelectric efficiency first decrease linearly and then drop sharply as I decreases at working fluid flow rates (Vwf) of 200 and 160 L/hr, while they only decrease slightly with I at Vwf of 120 L/hr. The light intensity of the turning point is 824 W/m2 at Vwf of 200 L/hr, which corresponds to an HTF temperature of 75 °C. In addition, it is found that the influence of light intensity on the performance of ORC becomes stronger for higher working fluid flow rate. Moreover, the light intensity and HTF temperature at the turning point increase with working fluid flow rate. The experimental results are of great significance for the design and operation of low-temperature solar ORC power generation system.


Sign in / Sign up

Export Citation Format

Share Document