scholarly journals Rainfall-induced landslide displacement prediction model based on attention mechanism neural network

Author(s):  
Tianjun Tang ◽  
Feifei Tang ◽  
Xifei Wang
2021 ◽  
Vol 11 (22) ◽  
pp. 11030
Author(s):  
Chenhui Wang ◽  
Yijiu Zhao ◽  
Libing Bai ◽  
Wei Guo ◽  
Qingjia Meng

The deformation process of landslide displacement has complex nonlinear characteristics. In view of the problems of large error, slow convergence and poor stability of the traditional neural network prediction model, in order to better realize the accurate and effective prediction of landslide displacement, this research proposes a landslide displacement prediction model based on Genetic Algorithm (GA) optimized Elman neural network. This model combines the GA with the Elman neural network to optimize the weights, thresholds and the number of hidden neurons of the Elman neural network. It gives full play to the dynamic memory function of the Elman neural network, overcomes the problems that a single Elman neural network can easily fall into local minimums and the neuron data is difficult to determine, thereby effectively improving the prediction performance of the neural network prediction model. The displacement monitoring data of a slow-varying landslide in the Guizhou karst mountainous area are selected to predict and verify the landslide displacement, and the results are compared with the traditional Elman neural network prediction results. The results show that the prediction results of GA-Elman model are in good agreement with the actual monitoring data of landslide. The average error of the model is low and the prediction accuracy is high, which proves that the GA-Elman model can play a role in the prediction of landslide displacement and can provide reference for the early warning of landslide displacement deformation.


Sign in / Sign up

Export Citation Format

Share Document