scholarly journals Halomonas venusta Coupled Operation of Nitrogen Removal and Electricity Generation under High Salt

Author(s):  
Jinfeng Wang ◽  
Weifeng Liu ◽  
Le Bo ◽  
Linghua Zhang
2014 ◽  
Vol 60 ◽  
pp. 56-63 ◽  
Author(s):  
Guangyi Zhang ◽  
Hanmin Zhang ◽  
Yanjie Ma ◽  
Guangen Yuan ◽  
Fenglin Yang ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 1455-1459
Author(s):  
Jing Tang ◽  
Hong Ming E ◽  
Jin Xiang Fu ◽  
Jin Nan Chen ◽  
Ming Fan

With nitrite or nitrate nitrogen as electron acceptor in the high salt conditons, halophilic denitrifying bacteria can transfer nitrite or nitrate to nitrogen, thereby purifying the high-salt wastewater. Halophilic denitrifying bacteria play an important role in the carbon and nitrogen removal of saline wastewater, such as petroleum, chemical industry, seafood processing and seafood farming. This article dissussed halophilic denitrifying bacteria screening, the main types and the corresponding morphological characteristics, then we focused on the research progress of main factors of halophilic denitrifying bacteria’s growth and nitrogen removal. Finally put forward the current problems of the research and development trend of halophilic denitrifying bacteria.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
S. M. Zain ◽  
N. L. Ching ◽  
S. Jusoh ◽  
S. Y. Yunus

The aim of this study is to identify the relationship between the rate of electricity generation and the rate of carbon and nitrogen removal from wastewater using different MFC processes.  Determining whether the generation of electricity using MFC process could be related to the rate of pollutant removal from wastewater is noteworthy. Three types of MFC process configurations include the batch mode (SS), a continuous flow of influent with ferricyanide (PF) as the oxidizing agent and a continuous flow of influent with oxygen (PU) as the oxidizing agent. The highest quantity of electricity generation was achieved using the continuous flow mode with ferricyanide (0.833 V), followed by the continuous flow mode with oxygen (0.589 V) and the batch mode (0.352 V). The highest efficiency of carbon removal is also achieved by the continuous flow mode with ferricyanide (87%), followed by the continuous flow mode with oxygen (51%) and the batch mode (46%). Moreover, the continuous flow mode with ferricyanide produced the highest efficiency for nitrogen removal (63%), followed by the continuous flow mode with oxygen (54%) and the batch mode (27%).


2020 ◽  
Vol 133 ◽  
pp. 107481 ◽  
Author(s):  
Fanjin Zeng ◽  
Yaoting Wu ◽  
Le Bo ◽  
Linghua Zhang ◽  
Weifeng Liu ◽  
...  

2020 ◽  
Vol 31 (4-6) ◽  
pp. 249-264 ◽  
Author(s):  
Ivar Zekker ◽  
Gourav Dhar Bhowmick ◽  
Hans Priks ◽  
Dibyojyoty Nath ◽  
Ergo Rikmann ◽  
...  

2015 ◽  
Vol 71 (5) ◽  
pp. 783-788 ◽  
Author(s):  
Gang Chen ◽  
Shaohui Zhang ◽  
Meng Li ◽  
Yan Wei

A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m3 net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.


Sign in / Sign up

Export Citation Format

Share Document