scholarly journals Experimental study of the influence of varying ceiling height on the heat release rate of a pool fire

Author(s):  
Jiahao Liu ◽  
Jian Wang ◽  
Yuen Richard
2021 ◽  
Vol 11 (7) ◽  
pp. 3247
Author(s):  
Dong Hwan Kim ◽  
Chi Young Lee ◽  
Chang Bo Oh

In this study, the effects of discharge area and atomizing gas type in a twin-fluid atomizer on heptane pool fire-extinguishing performance were investigated under the heat release rate conditions of 1.17 and 5.23 kW in an enclosed chamber. Large and small full cone twin-fluid atomizers were prepared. Nitrogen and air were used as atomizing gases. With respect to the droplet size of water mist, as the water and air flow rates decreased and increased, respectively, the Sauter mean diameter (SMD) of the water mist decreased. The SMD of large and small atomizers were in the range of approximately 12–60 and 12–49 μm, respectively. With respect to the discharge area effect, the small atomizer exhibited a shorter extinguishing time, lower peak surface temperature, and higher minimum oxygen concentration than the large atomizer. Furthermore, it was observed that the effect of the discharge area on fire-extinguishing performance is dominant under certain flow rate conditions. With respect to the atomizing gas type effect, nitrogen and air appeared to exhibit nearly similar extinguishing times, peak surface temperatures, and minimum oxygen concentrations under most flow rate conditions. Based on the present and previous studies, it was revealed that the effect of atomizing gas type on fire-extinguishing performance is dependent on the relative positions of the discharged flow and fire source.


2018 ◽  
Vol 42 (6) ◽  
pp. 620-626 ◽  
Author(s):  
Qiuju Ma ◽  
Jiachen Chen ◽  
Hui Zhang

2014 ◽  
Vol 962-965 ◽  
pp. 1025-1028
Author(s):  
Xiao Feng Ma

the paper determines and calculates variation of gas and heating capacity in a combustible organic rock, the experiment shows that organic sample radiating intensity is low when temperature is below 110 °C, it gradually increased more than 110 °C when the heat release rate increases considerably. the speed of CO and CO2production rates increased slowly nevertheless the temperature is up to 65°C and raised faster and finally enhanced dramatically. Organic rock combustion can be inhibited effectively by lowering the temperature and reduce Organic Rock oxidation velocity.


2016 ◽  
Vol 705 ◽  
pp. 114-118 ◽  
Author(s):  
Fei Peng ◽  
Li Zhong Yang ◽  
Xiao Dong Zhou

A series of experiments was designed to investigate the effects of ceiling on upward flame spread. The result reveals that the ceiling accelerates the burning rate of upward flame under certain situations. And the acceleration is slightly increase with the increasing sample length, but almost keeps the same with different sample width. The heat release rate per unit area nearly keeps the same for the series work with ceiling or the series work without ceiling. But the heat release rate per unit area between the two series is obvious, the heat release rate per unit area with ceiling is much higher than the ones without ceiling.


2021 ◽  
Vol 21 (2) ◽  
pp. 65-71
Author(s):  
Seunggoo Kang ◽  
Yi Chul Shin

In this study, to allow the flashover to occur, combustion tests were conducted by setting the conditions of a fire source using a large-scale compartment and changing the opening condition. As a result, the inside temperature of the compartment was measured under the fire source conditions. Moreover, according to the “Handbook on Design Calculation &#x0004d;ethods of Fire Behavior” by the Architectural Institute of Japan, the validity of the heat release rate required for the flashover to occur was verified through the correlation between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mrow><mi>F</mi><mi>O</mi></mrow></msub><mo>/</mo><msub><mi>Q</mi><mrow><mi>v</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>T</mi></msub><msup><mrow><mo>(</mo><mi>k</mi><mi>p</mi><mi>c</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>/</mo><msub><mi>c</mi><mrow><mi>P</mi></mrow></msub><mn>0</mn><mo>.</mo><mn>5</mn><mi>A</mi><msup><mi>H</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math>.


Author(s):  
Qiuju Ma ◽  
Quanyi Liu ◽  
Runhe Tian ◽  
Junjian Ye ◽  
Rui Yang ◽  
...  

This research aims to investigate the effect of ambient pressure on the burning rate and heat release rate (HRR) of n-heptane pool fire. The experiments were performed in a large-scale altitude chamber of size 2 m×3 m×4.65 m under series of pressure, 24kpa, 38 kPa, 64 kPa and 75 kPa to 90 kPa. A round steel fuel pans of 34 cm in diameter and 15 cm in height was chosen for the pool fire tests. The fuel pan was filled with 99% pure liquid n-Heptane. Experimental results show that the burning rate increases rapidly after ignition until it reaches to the peak, and then maintains at a relatively stable stage. It decreases gradually until the flame extinguishes. The burning time is longer at lower pressure. The mean mass burning rate at the steady burning stage increases exponentially with pressure as ṁ ∼ Pα, with α = 0.68. HRR curve has a similar trend with the burning rate. The maximum HRR increases from 27kW to 62kW as the pressure rises from 24kPa to 90kPa. It is concluded that the ambient pressure has a significant effect on the fire heat release rate, and will further influent on other fire parameters.


Sign in / Sign up

Export Citation Format

Share Document