scholarly journals The effects of pre-processing sanitation and modified atmosphere packaging on microbial growth in bulk packs of Atlantic salmon (Salmo salar) fillets

2021 ◽  
Vol 733 (1) ◽  
pp. 012081
Author(s):  
Fera R Dewi ◽  
Shane M Powell ◽  
Roger A Stanley
Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1981 ◽  
Author(s):  
Athanasios Kritikos ◽  
Ioanna Aska ◽  
Sotirios Ekonomou ◽  
Athanasios Mallouchos ◽  
Foteini F. Parlapani ◽  
...  

Fish spoilage occurs due to production of metabolites during storage, from bacterial action and chemical reactions, which leads to sensory rejection. Investigating the volatilome profile can reveal the potential spoilage markers. The evolution of volatile organic molecules during storage of European seabass (Dicentrarchus labrax) fillets and Atlantic salmon (Salmo salar) slices under modified atmosphere packaging at 2 °C was recorded by solid-phase microextraction combined with gas chromatography-mass spectrometry. Total volatile basic nitrogen (TVB-N), microbiological, and sensory changes were also monitored. The shelf life of seabass fillets and salmon slices was 10.5 days. Pseudomonas and H2S-producing bacteria were the dominant microorganisms in both fish. TVB-N increased from the middle of storage, but never reached concentrations higher than the regulatory limit of 30–35 mg N/100 g. The volatilome consisted of a number of aldehydes, ketones, alcohols and esters, common to both fish species. However, different evolution patterns were observed, indicating the effect of fish substrate on microbial growth and eventually the generation of volatiles. The compounds 3-hydroxy-2-butanone, 2,3-butanediol, 2,3-butanedione and acetic acid could be proposed as potential spoilage markers. The identification and quantification of the volatilities of specific fish species via the development of a database with the fingerprint of fish species stored under certain storage conditions can help towards rapid spoilage assessment.


2009 ◽  
Vol 74 (6) ◽  
pp. M242-M249 ◽  
Author(s):  
Anlaug Ådland Hansen ◽  
Turid Mørkøre ◽  
Knut Rudi ◽  
Marit Rødbotten ◽  
Frøydis Bjerke ◽  
...  

2001 ◽  
Vol 32 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sjofn Sigurgisladottir ◽  
Margret S. Sigurdardottir ◽  
Helga Ingvarsdottir ◽  
Ole J. Torrissen ◽  
Hannes Hafsteinsson

2005 ◽  
Vol 68 (7) ◽  
pp. 1336-1339 ◽  
Author(s):  
L. L. NESSE ◽  
T. LØVOLD ◽  
B. BERGSJØ ◽  
K. NORDBY ◽  
C. WALLACE ◽  
...  

The objective of our experiments was to study the persistence and dissemination of orally administered Salmonella in smoltified Atlantic salmon. In experiment 1, salmon kept at 15°C were fed for 1 week with feed contaminated with 96 most-probable-number units of Salmonella Agona per 100 g of feed and then starved for 2 weeks. Samples were taken from the gastrointestinal tract and examined for Salmonella 1, 2, 8, 9, 15, and 16 days after the feeding ended. In experiment 2, Salmonella Agona and Montevideo were separately mixed with feed and administered by gastric intubation. Each fish received 1.0 × 108, 1.0 × 106, or 1.0 × 104 CFU. The different groups were kept in parallel at 5 and 15°C and observed for 4 weeks. Every week, three fish in each group were sacrificed, and samples were taken from the skin, the pooled internal organs, the muscle, and the gastrointestinal tract and examined for the presence of Salmonella. The results from the two experiments showed that the persistence of Salmonella in the fish was highly dependent on the dose administered. Salmonella was not recovered from any of the fish that were fed for 1 week with the lowest concentration of Salmonella. In the fish given the highest dose of Salmonella, bacteria persisted for at least 4 weeks in the gastrointestinal tract as well as, to some extent, the internal organs. The present study shows that under practical conditions in Norway, the risk of Salmonella in fish feed being passed on to the consumer of the fish is negligible.


Sign in / Sign up

Export Citation Format

Share Document