scholarly journals Analysis of deformation and failure characteristics of soft and broken surrounding rocks of super-large section tunnel constructed using benching tunneling method

2021 ◽  
Vol 769 (3) ◽  
pp. 032058
Author(s):  
Fei Wan ◽  
Chongtao Fu ◽  
Changwu Zhou ◽  
Lei Li ◽  
Xuan Zhang
AIP Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 075222 ◽  
Author(s):  
Lingfan Zhang ◽  
Duoxing Yang ◽  
Zhonghui Chen

2019 ◽  
Vol 16 (5) ◽  
pp. 862-874
Author(s):  
Yang Song ◽  
Heping Wang ◽  
Meng Ren

Abstract To study more fully the characteristic law of deformation and failure of tuff jointed rock mass of prefabricated parallel discontinuous joint test specimens, the uniaxial compression test was used. The stress–strain curve, peak intensity, deformation parameters, energy characteristics, etc., of the rock test specimens were systematically studied under different combinations of joint dip angle and joint spacing. The research found that: (1) during the failure process of tuff, the peak intensity and elastic modulus followed a U-shaped change pattern and the minimum value was reached when α = 60°; (2) the fracture modes of test specimens with different joint dip angles were different. When α = 30° and 45°, failure characteristics were mixed modes of tensile or tensile shear failure. When α = 60°, failure characteristics were shear. At α = 75°, the failure characteristic was tensile shear failure. (3) The absorbed and dissipated energy of the rock increased nonlinearly at each stage of deformation. (4) We quantified rock energy damage through a correlation between dissipated energy and absorbed energy of the rock in the process of energy evolution, and obtained an evolution of the relationship between the dissipated energy ratio, crack dip angle and crack spacing. Based on different fracture distribution methods and according to the strain equivalence principle, the constitutive equation of the pre-peak rock damage was obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sen Yang ◽  
Xinzhu Hua ◽  
Xiao Liu ◽  
Enqian Wang ◽  
Chen Li

In order to study the deflection and failure characteristics of the goaf roof, a mechanical model of the goaf thin plate is established and the deflection expression of the goaf roof is obtained. The results show the following: (1) under the action of single factor, the roof deflection is more sensitive to the interaction of unsupported roof distance and load, but less sensitive to the support force. (2) The influence degree of each factor on the deflection of the thin plate in the unsupported top area is as follows: unsupported roof distance and load interaction > unsupported roof distance and supporting force > supporting force and load. (3) The roof bending deformation is slow when the unsupported roof distance is within 0–2.3 m. When the vacant distance of the roof is more than 2.3 m, the bending deformation of the roof is accelerated. Using FLAC3D numerical simulation software, the distribution of vertical stress and displacement under different space distances is analyzed and the reasonable space distance is 2.0 m. Through the application of 150802 machine roadway in Liuzhuang coal mine, the driving speed of the coal roadway is improved and the monthly footage of coal roadway reaches 506 m.


2020 ◽  
Vol 36 (5) ◽  
pp. 623-636
Author(s):  
D.D. Lyu ◽  
W. Hu ◽  
B. Ren ◽  
X.F. Pan ◽  
C. T. Wu

ABSTRACTResidual deformation and failure are two critical issues in powder bed fusion (PBF) additive manufacturing (AM) of metal products. Residual deformation caused by the non-uniform residual stress distribution dramatically affects the quality of AM product and can result in catastrophic failure in operation. Therefore, the development of an effective numerical approach to predict residual deformation and failure characteristics of AM product is always a major concern in industrial applications.In this paper, a numerical approach in predicting residual distortion, stress and failure in AM products is presented. The conventional inherent strain method used in welding process is modified to consider the specific characteristic of AM process, such as the influences of reheating and scanning pattern. This approach consists of three simulation steps including a detailed process simulation in small-scale, a onetime static mechanical finite element analysis in part-scale, and a material failure analysis. First, the inherent strains are calculated from a thermo-mechanical process simulation in small-scale, which considers AM process parameters, such as laser power, scanning speed and path. The physical state in deposited materials including powder, liquid and solid states are taken into account in the simulation by specifying the solidus and liquidus temperature and corresponding material properties. Then the inherent strains are applied layer by layer to the part-scale simulation, where the residual distortion and stress can be predicted efficiently. Finally, a Lagrange particle method is utilized to study the failure characteristics of AM products. Numerical examples are studied to investigate the effectiveness and applicability of present approach.


Sign in / Sign up

Export Citation Format

Share Document