scholarly journals New test rig for micro and mini hydraulic axial turbines in Uruguay

2021 ◽  
Vol 774 (1) ◽  
pp. 012131
Author(s):  
R Pienika ◽  
I Rovira ◽  
N Rodríguez
Keyword(s):  
Test Rig ◽  
Author(s):  
Fernando Augusto de Noronha Castro Pinto ◽  
Thiago Ritto ◽  
David Julian Gonzalez Maldonado ◽  
Diego Alejandro Godoy Diaz
Keyword(s):  

2013 ◽  
Vol 41 (2) ◽  
pp. 501-516
Author(s):  
Abdullah Mohammed ◽  
Karam M. Emara ◽  
Mahmoud M. Nemat-Alla
Keyword(s):  

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Stefan Hoerner ◽  
Shokoofeh Abbaszadeh ◽  
Olivier Cleynen ◽  
Cyrille Bonamy ◽  
Thierry Maître ◽  
...  

Abstract State-of-the-art technologies for wind and tidal energy exploitation focus mostly on axial turbines. However, cross-flow hydrokinetic tidal turbines possess interesting features, such as higher area-based power density in array installations and shallow water, as well as a generally simpler design. Up to now, the highly unsteady flow conditions and cyclic blade stall have hindered deployment at large scales because of the resulting low single-turbine efficiency and fatigue failure challenges. Concepts exist which overcome these drawbacks by actively controlling the flow, at the cost of increased mechatronical complexity. Here, we propose a bioinspired approach with hyperflexible turbine blades. The rotor naturally adapts to the flow through deformation, reducing flow separation and stall in a passive manner. This results in higher efficiency and increased turbine lifetime through decreased structural loads, without compromising on the simplicity of the design. Graphic abstract


2021 ◽  
pp. 107754632110161
Author(s):  
Aref Aasi ◽  
Ramtin Tabatabaei ◽  
Erfan Aasi ◽  
Seyed Mohammad Jafari

Inspired by previous achievements, different time-domain features for diagnosis of rolling element bearings are investigated in this study. An experimental test rig is prepared for condition monitoring of angular contact bearing by using an acoustic emission sensor for this purpose. The acoustic emission signals are acquired from defective bearing, and the sensor takes signals from defects on the inner or outer race of the bearing. By studying the literature works, different domains of features are classified, and the most common time-domain features are selected for condition monitoring. The considered features are calculated for obtained signals with different loadings, speeds, and sizes of defects on the inner and outer race of the bearing. Our results indicate that the clearance, sixth central moment, impulse, kurtosis, and crest factors are appropriate features for diagnosis purposes. Moreover, our results show that the clearance factor for small defects and sixth central moment for large defects are promising for defect diagnosis on rolling element bearings.


2017 ◽  
Vol 37 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Haluk Ay ◽  
Anthony Luscher ◽  
Carolyn Sommerich

Purpose The purpose of this study is to design and develop a testing device to simulate interaction between human hand–arm dynamics, right-angle (RA) computer-controlled power torque tools and joint-tightening task-related variables. Design/methodology/approach The testing rig can simulate a variety of tools, tasks and operator conditions. The device includes custom data-acquisition electronics and graphical user interface-based software. The simulation of the human hand–arm dynamics is based on the rig’s four-bar mechanism-based design and mechanical components that provide adjustable stiffness (via pneumatic cylinder) and mass (via plates) and non-adjustable damping. The stiffness and mass values used are based on an experimentally validated hand–arm model that includes a database of model parameters. This database is with respect to gender and working posture, corresponding to experienced tool operators from a prior study. Findings The rig measures tool handle force and displacement responses simultaneously. Peak force and displacement coefficients of determination (R2) between rig estimations and human testing measurements were 0.98 and 0.85, respectively, for the same set of tools, tasks and operator conditions. The rig also provides predicted tool operator acceptability ratings, using a data set from a prior study of discomfort in experienced operators during torque tool use. Research limitations/implications Deviations from linearity may influence handle force and displacement measurements. Stiction (Coulomb friction) in the overall rig, as well as in the air cylinder piston, is neglected. The rig’s mechanical damping is not adjustable, despite the fact that human hand–arm damping varies with respect to gender and working posture. Deviations from these assumptions may affect the correlation of the handle force and displacement measurements with those of human testing for the same tool, task and operator conditions. Practical implications This test rig will allow the rapid assessment of the ergonomic performance of DC torque tools, saving considerable time in lineside applications and reducing the risk of worker injury. DC torque tools are an extremely effective way of increasing production rate and improving torque accuracy. Being a complex dynamic system, however, the performance of DC torque tools varies in each application. Changes in worker mass, damping and stiffness, as well as joint stiffness and tool program, make each application unique. This test rig models all of these factors and allows quick assessment. Social implications The use of this tool test rig will help to identify and understand risk factors that contribute to musculoskeletal disorders (MSDs) associated with the use of torque tools. Tool operators are subjected to large impulsive handle reaction forces, as joint torque builds up while tightening a fastener. Repeated exposure to such forces is associated with muscle soreness, fatigue and physical stress which are also risk factors for upper extremity injuries (MSDs; e.g. tendinosis, myofascial pain). Eccentric exercise exertions are known to cause damage to muscle tissue in untrained individuals and affect subsequent performance. Originality/value The rig provides a novel means for quantitative, repeatable dynamic evaluation of RA powered torque tools and objective selection of tightening programs. Compared to current static tool assessment methods, dynamic testing provides a more realistic tool assessment relative to the tool operator’s experience. This may lead to improvements in tool or controller design and reduction in associated musculoskeletal discomfort in operators.


Sign in / Sign up

Export Citation Format

Share Document