Plain bearings. Automotive engine bearing test rig using actual connecting rods

2020 ◽  
Author(s):  
S. Moreau ◽  
F. Bakir

This paper deals with stator efficiency improvement meant for automotive engine cooling fan systems. A new rapid prototype of a long stator designed for a small diameter Valeo rotor (320 mm) has been manufactured and tested on a recently designed Valeo-LEMFI test rig. The following points are presented: • Overall performances of the 320 mm rotor alone. • Overall performances of the 320 mm rotor combined with the new long stator vanes: this study confirms the gain of efficiency foreseen previously with the simplified radial equilibrium code VENTAX. • Steady velocities measured 41 mm downstream of the stage configuration: These measurements obtained by using a 5-hole probe show high deflection carried out by the stators with long chord lengths. Comparisons with preliminary CFD simulations are also shown for both the overall performances and the local velocities.


Author(s):  
F. Bakir ◽  
S. Moreau

This paper deals with stator efficiency improvement meant for automotive engine cooling fan systems. Four stators designed for a Valeo 380 mm rotor were manufactured and tested on a newly designed Valeo-Lemfi test rig. The following points are presented: • Overall performances of the 380 mm rotor. • Overall performances of the 380 mm rotor combined with a short chord stator. Inefficiency of such a design is shown: Slight deflection carried out by the stator is the cause of the slight gain of efficiency. • Overall performances of the 380 mm rotor combined to three long chord stators: this study confirms the gain of efficiency foreseen previously with the simplified radial equilibrium code VENTAX. • Steady velocities measured 33 mm downstream the various stage configurations: These measurements obtained by using a 5-holes probe show high deflection carried out by the long chord stators.


2006 ◽  
Vol 129 (2) ◽  
pp. 194-202 ◽  
Author(s):  
Peter C. Hung ◽  
Robert J. Kee ◽  
George W. Irwin ◽  
Seán F. McLoone

Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in the harsh environment found in combustion systems and automotive engine exhausts, large wire diameters are required and consequently the measurement bandwidth is reduced. This paper describes two new algorithmic compensation techniques based on blind deconvolution to address this loss of high-frequency signal components using the measurements from two thermocouples. In particular, a continuous-time approach is proposed, combined with a cross-relation blind deconvolution for parameter estimation. A feature of this approach is that no a priori assumption is made about the time constant ratio of the two thermocouples. The advantages, including small estimation variance and limitations of the method, are highlighted using results from simulation and test rig studies.


2016 ◽  
Vol 78 (10-2) ◽  
Author(s):  
Mohamad Lazim Mohamed Tasuni ◽  
Zulkarnain Abdul Latiff ◽  
Henry Nasution ◽  
Mohd Rozi Mohd Perang ◽  
Hishammudin Mohd Jamil ◽  
...  

A cooling system employed in an automobile is to maintain the desired coolant temperature thus ensuring for optimum engine operation. Forced convection obtained by means of a water pump will enhance the cooling effect. Thus it is necessary to understand the system’s pump operation and be able to provide for the ultimate cooling of the engine. The objective of this laboratory investigation is to study the water pump characteristics of an engine cooling system. The crucial water pump parameters are the head, power, and its efficiency. In order to investigate the water pump characteristic a dedicated automotive cooling simulator test rig was designed and developed. All of the data obtained are important towards designing for a more efficient water pump such as electric pump that is independent of the power from the engine. In addition to this fact, the simulator test rig can also be used to investigate for any other parameters and products such as radiator performance and electric pump before installation in the actual engine cooling system. From the experiment conducted to simulate for the performance of a cooling system of a Proton Wira (4G15), the maximum power equals to 37 W which indicates the efficiency of the pump is relatively too low as compared to the typical power consume by the pump from the engine which are about 1 to 2 kW. Whereas the maximum power and efficiency obtained from the simulator test rig simulator is equals to 42 W and 15% respectively.


Author(s):  
Wolfram Kurz ◽  
Klaus Dullenkopf ◽  
Hans-Jörg Bauer

The aim of the presented work was to identify factors that influence the oil split between the two offtakes of a vented aero-engine bearing chamber. The impact of different vent and scavenge offtake designs was experimentally investigated with a test rig at the ITS. The generic bearing chamber was also equipped with ten film thickness sensors. The film measurements allowed a further evaluation of the mechanisms behind different oil splits. Two of the examined offtake features ensured a very constant oil split: a protruding vent and a covered ramp offtake. The latter also decreased the oil film thickness on the bearing chamber walls significantly. Furthermore, an influence of a non-uniform seal gap was detected which altered the oil split by several percent.


Author(s):  
Wolfram Kurz ◽  
Hans-Jörg Bauer

The paper discusses an approach to predict the two-phase flow regime in an aero engine bearing chamber. In general, one of two distinct flow regimes can occur in a bearing chamber. At lower shaft speeds, the oil flow is only partially affected by the air flow, which is driven by the rotating shaft. At higher shaft speeds, however, the rotating air flow forces the oil film at the chamber walls to rotate, too. Thus, the two flow regimes correspond to two very different oil film distributions inside a bearing chamber presumably with significant consequences for the internal wall heat transfer. In order to determine the driving parameters for the flow regimes and the change between them, experiments were carried out with a bearing chamber test rig. With this test rig all relevant operating parameters as well as the geometry of the bearing chamber could be varied independently. The analysis of the experimental data allowed defining a general parameter which takes into account the chamber pressure, shaft speed, oil viscosity and chamber length. The influence of the oil flow rate and the overall dimensions are assessed qualitatively.


Author(s):  
Yaodong Wang ◽  
Tom Ruxton

An experimental investigation of NOx emission reduction from automotive (petrol) engine using the Miller Cycle was carried out. Two versions of Miller Cycle were designed and realized on a petrol engine. The tests were carried out on the test rig. The test results showed that applying Miller Cycle could reduce the emission of nitrogen oxides from petrol engine.


Author(s):  
C. W. Lee ◽  
G. R. Johnson ◽  
P. C. Palma ◽  
K. Simmons ◽  
S. J. Pickering

In this study oil delivery to an aero-engine bearing via a targeted jet was investigated using a bearing chamber test rig. The rig contains a high-speed rotating shaft of engine representative geometry within a stationary Perspex housing. Oil is collected from feedholes leading from scoops (scallops) on the shaft. The efficiency of this oil delivery system is dependent on jet structure and trajectory as it interacts with the rotating chamber flow. Flow visualization techniques and parametric tests are used to assess the influence of shaft speed and jet flowrate on oil collected through the feedholes. Detailed pictures of the structure of the jet in quiescent air are presented and compared with those from the rig, where there is a gas crossflow. As expected, jet break-up is accentuated in the rig. This influences jet impact behaviour at the scallop, and a consequent variation of oil distribution in the system is observed.


Sign in / Sign up

Export Citation Format

Share Document