scholarly journals Displacement Analysis Due To Time History Load Case Study Building C And D Itera

2021 ◽  
Vol 830 (1) ◽  
pp. 012003
Author(s):  
Siska Apriwelni ◽  
Ahmad Yudi ◽  
Thio Tilameo
2014 ◽  
Vol 36 (4) ◽  
pp. 245-254
Author(s):  
N. T. Khiem ◽  
P. T. Hang

In present paper, the spectral approach is proposed for analysis of multiple cracked beam subjected to general moving load that allows us to obtain explicitly dynamic response of the beam in frequency domain. The obtained frequency response is straightforward to calculate time history response by using the FFT algorithm and provides a novel tool to investigate effect of position and depth of multiple cracks on the dynamic response. The analysis is important to develop the spectral method for identification of multiple cracked beam by using its response to moving load. The theoretical development is illustrated and validated by numerical case study.


2019 ◽  
Vol 19 (04) ◽  
pp. 1971002 ◽  
Author(s):  
X. X. Cheng ◽  
Y. J. Ge

In this paper, we propose an innovative structural health monitoring (SHM) system for large transmission towers that are frequently subjected to strong winds. The system is based on the strategy of using a static force equilibrium equation to calculate the whole structure’s real-time stress distribution according to its real-time behavior, as captured by the global positioning system (GPS). The reason for adopting this approach is that large transmission towers are fundamentally quasi-static structures and they are not prone to resonance under wind excitations. A case study is used to present the SHM system, then its effectiveness is validated by comparing the simulated SHM results with the exact solution obtained by a realistic time-history dynamic analysis. Additionally, we discuss the use of a new reliability analysis method based on the Ditlevsen’s bounds to assess the real-time structural conditions.


2017 ◽  
Vol 4 ◽  
pp. 24-30
Author(s):  
Shyam Sundar Basukala ◽  
Prem Nath Maskey

Historic buildings of Nepal are mainly constructed from masonry structure. Since masonry structures are weak in tension which leads to the failure of structure. So, to avoid possible damage in environment lives and property it is urgent to conduct vulnerability assessments. Seismic vulnerability of historic masonry buildings constructed in Bhaktapur at Byasi area is carried out for the case study. Five load bearing masonry buildings were selected out of 147 buildings considering opening percentage, storey and type of floor for modeling in SAP 2000 V10 Various methods of rapid visual screening (FEMA 154, EMS 98) are used to determine the vulnerability of the selected building. The Selected Building response is carried out by linear time history analysis. The seismic vulnerability of masonry structures is determined in terms of fragility curves which represent the probability of failure or damage due to various levels of strong ground motions for different damage state slight, moderate, extensive and collapse. From the result of Rapid Visual Screening (RVS) and Fragility curves of the buildings it is found that whole, buildings are found vulnerable from future earthquake.


2020 ◽  
Author(s):  
Okan Özcan ◽  
Orkan Özcan

<p>Evaluating the multi-hazard performance of river crossing bridges under probable earthquake, flood, and scouring scenarios is a cumbersome task in performance-based engineering. The loss of lateral load capacity at bridge foundations may induce bridges to become highly vulnerable to failure when the effects of scour and floods are combined. Besides, the assessment of local scouring mechanism around bridge piers provides information for decision‐making regarding the pile footing design and for predicting the safety of bridges under critical scoured conditions. Thereby, accurate high-resolution Digital Elevation Models (DEMs) are critical for many hydraulic applications such as erosion, hydraulic modelling, sediment transport, and morphodynamics. In the present study, an automated unmanned aerial vehicle (UAV) based multi-hazard performance assessment system was developed to respond to rapid performance evaluation and performance prediction needs for river crossing reinforced concrete (RC) bridges. The Bogacay Bridge constructed over Bogacay in Antalya, Turkey was selected as the case study. In the developed system, firstly the seasonally acquired UAV measurements were used to obtain the DEMs of the river bed from 2016 to 2019. The transverse cross sections of the river bed that were taken close to the inspected bridge were used to measure the depth of the scoured regions along the bridge piles under the present conditions. Separately, in conjunction with the flood simulation and validation with 2003 flood event (corresponds to Q<sub>50</sub>=1940 m<sup>3</sup>/s), the scour depth after maximum probable flood load according to the return period of 500 years (Q<sub>500</sub>=2560 m<sup>3</sup>/s) were predicted by HEC-RAS software. Afterwards, the 3D finite element model (FEM) of the bridge was constituted automatically with the developed code considering the scoured piles. The flood loads were exerted on the modeled bridge with regard to the HEC-RAS flood inundation map and relevant water depth estimations around the bridge piers. For the seismic evaluation, nonlinear time history analyses (THA) were conducted by using scaled eleven scaled earthquake acceleration records that were acting in both principal axes of the bridge simultaneously by considering maximum direction spectra (SaRotD100) as compatible with the region seismicity. In the analyses; as the scour depth increased, the fundamental periods, shear forces and the bending moments were observed to increase while the pile lateral load capacities diminished. Therefore, the applicability of the proposed system was verified using the case study bridge.</p>


2013 ◽  
Vol 04 (02) ◽  
pp. 167-180 ◽  
Author(s):  
Mohammad T. Arif ◽  
Amanullah M. T. Oo ◽  
A. B. M. Shawkat Ali ◽  
G. M. Shafiullah

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Yudi ◽  
N. B. Wirawan ◽  
S. A. Fauzan ◽  
R. Nadeak

2015 ◽  
Vol 3 (3) ◽  
Author(s):  
Hongfang Lu ◽  
Kun Huang ◽  
Shijuan Wu ◽  
Xiaoyu Han ◽  
Lijie Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document