scholarly journals Distribution of fluid flow pressure through tandem square cylinders with the addition of triangular cylinder as a disturbance object

2021 ◽  
Vol 841 (1) ◽  
pp. 012014
Author(s):  
Syahrir Habiba ◽  
Nasaruddin Salam ◽  
Rustan Tarakka ◽  
Jalaluddin ◽  
Muhammad Ihsan
2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


Author(s):  
Atsushi Okajima ◽  
Takahiro Kiwata ◽  
Satoru Yasui ◽  
Yoshiki Mori ◽  
Shigeo Kimura

Flow-induced streamwise oscillation of two tandem square cylinders has been studied by means of free-oscillation testing in a wind tunnel. One cylinder was elastically supported so as to allow it to move in the streamwise direction; the other was fixed to the tunnel sidewalls. Small values of the reduced mass-damping parameter (Cn ≤ 1.63) have been considered. When the upstream cylinder is free to oscillate, there are two excitation regions: the first for reduced velocity, Vr, in the range 2.5 ≤ Vr ≤ 5 and cylinder gap distance to reference-length ratio, s, between 0.3 and 2, is due to movement-induced excitation accompanied by symmetrical vortex shedding, while the second, for 0.75 ≤ s ≤ 1.5 and 4.5 ≤ Vr ≤ 6.5, is due to vortex excitation by alternate Karman vortex shedding, accompanied with unstable limit-cycle oscillation. For wide gap distances over 2.5, an excitation region of the upstream cylinder occurs for 3.5 ≤ Vr ≤ 4.7, which is due to alternate Karman vortex shedding, and resembles the streamwise oscillation of a single cylinder. On the other hand, when the downstream cylinder is free to oscillate for narrow gap distances of 0.3 ≤ s ≤ 0.75, the response characteristics have an excitation region due to alternate Karman vortex shedding from the two cylinders, connected by dead water region between them, for 3.2 ≤ Vr ≤ 5.4. When s is greater than 1, the downstream cylinder experiences buffeting by wake fluctuation of the upstream cylinder.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Waqas Sarwar Abbasi ◽  
Shams Ul Islam ◽  
Hamid Rahman

This work presents the numerical investigations performed to study the proximity effects on fluid flow characteristics around three inline square cylinders using the lattice Boltzmann method. For this purpose the gap spacing (g) is systematically varied in the range 0.5 to 16 diameters of cylinder by keeping Reynolds number fixed at 200. Five different flow patterns are observed at different values of spacing: bluff body flow, gap trapped flow, irregular flow, alternate shedding, and modulated shedding. These patterns have a significant effect on flow induced forces and vortex shedding frequency. The spacing value g = 2 is found to be critical due to sudden changes in fluid flow characteristics. The flow parameters of first cylinder are found to be closer to single cylinder values but for middle and third cylinder the differences confirm the wake interference effect even at large values of spacing.


2019 ◽  
Vol 31 (7) ◽  
pp. 075102 ◽  
Author(s):  
Jingmiao Shang ◽  
Qiang Zhou ◽  
Md. Mahbub Alam ◽  
Haili Liao ◽  
Shuyang Cao

Sign in / Sign up

Export Citation Format

Share Document