scholarly journals Identification of Ransiki fault segment in South Manokwari Regency, West Papua Province, Indonesia based on analysis of a high-resolution of global gravity field: Implications on the Earthquake Source Parameters

2021 ◽  
Vol 873 (1) ◽  
pp. 012048
Author(s):  
Richard Lewerissa ◽  
Nur Alzair ◽  
Laura Lapono

Abstract The province of West Papua in Indonesia is an area crossed by three major faults, including Sorong, Koor, and Ransiki, leading to the collision of Australia, the Pacific, and Eurasia. In the past, there have been strong and damaging earthquakes on these faults, manly Ransiki fault in the South Manokwari regency. Identification of the Ransiki fault segment was conducted by geological subsurface modeling using the earth gravity field of the Global Gravity Map (GGM) based on satellite measurements implicates for earthquake source parameters. The GGM is seen as a solution for the unavailability of direct measurements in the region. The gravity field analysis begins with data reduction using SRTM2gravity as modern terrain correction to obtain a complete Bouguer anomaly. Furthermore, the gravity gradient approach through vertical and horizontal gradients, analytical signal, and the tilt angle are applied to emphasize a contact or fault structures that are not visible using a 2D fast Fourier transform. Overall, the gravity gradient analysis obtained results that were compatible with the alignment of the Ransiki fault segment which direction of the northwest to south. The gravity inversion produces a geological subsurface model that clearly shows the Ransiki fault segment, associated with a low rock density distribution, thought to the Befoor formation and quaternary sediments, located between high-density rocks correlated to Arfak volcanic rocks as a basement.

2015 ◽  
Vol 22 (5) ◽  
pp. 625-632
Author(s):  
P. A. Toledo ◽  
S. R. Riquelme ◽  
J. A. Campos

Abstract. We study the main parameters of earthquakes from the perspective of the first digit phenomenon: the nonuniform probability of the lower first digit different from 0 compared to the higher ones. We found that source parameters like coseismic slip distributions at the fault and coseismic inland displacements show first digit anomaly. We also found the tsunami runups measured after the earthquake to display the phenomenon. Other parameters found to obey first digit anomaly are related to the aftershocks: we show that seismic moment liberation and seismic waiting times also display an anomaly. We explain this finding by invoking a self-organized criticality framework. We demonstrate that critically organized automata show the first digit signature and we interpret this as a possible explanation of the behavior of the studied parameters of the Tohoku earthquake.


Author(s):  
Barry Hirshorn ◽  
Stuart Weinstein ◽  
Dailin Wang ◽  
Kanoa Koyanagi ◽  
Nathan Becker ◽  
...  

2016 ◽  
Vol 16 (2) ◽  
pp. 577-593 ◽  
Author(s):  
Katsuichiro Goda ◽  
Kamilla Abilova

Abstract. This study investigates the issues related to underestimation of the earthquake source parameters in the context of tsunami early warning and tsunami risk assessment. The magnitude of a very large event may be underestimated significantly during the early stage of the disaster, resulting in the issuance of incorrect tsunami warnings. Tsunamigenic events in the Tohoku region of Japan, where the 2011 tsunami occurred, are focused on as a case study to illustrate the significance of the problems. The effects of biases in the estimated earthquake magnitude on tsunami loss are investigated using a rigorous probabilistic tsunami loss calculation tool that can be applied to a range of earthquake magnitudes by accounting for uncertainties of earthquake source parameters (e.g., geometry, mean slip, and spatial slip distribution). The quantitative tsunami loss results provide valuable insights regarding the importance of deriving accurate seismic information as well as the potential biases of the anticipated tsunami consequences. Finally, the usefulness of rigorous tsunami risk assessment is discussed in defining critical hazard scenarios based on the potential consequences due to tsunami disasters.


2019 ◽  
Vol 219 (3) ◽  
pp. 1514-1531
Author(s):  
Somayeh Ahmadzadeh ◽  
G Javan Doloei ◽  
Stefano Parolai ◽  
Adrien Oth

SUMMARY S-wave spectral amplitudes from 312 crustal earthquakes recorded at the Iranian National Broadband Seismic Network in the Alborz region between 2005 and 2017 are analysed in order to evaluate earthquake source parameters, path attenuation and site amplification functions using the non-parametric generalized inversion technique (GIT). We exploit a total number of 1117 seismograms with ML 3–5.6 in the frequency range 0.3–20 Hz. The evaluated non-parametric attenuation functions decay uniformly with distance for the entire frequency range and the estimated S-wave quality factor shows low Q values with relatively strong frequency dependence. We assume the omega-square source model to retrieve earthquake source parameters from the inverted source spectra. The obtained stress drops range from 0.02 to 16 MPa with a mean value of 1.1 MPa. Stress drop and radiated energy show fairly self-similar scaling with seismic moment over the available magnitude range; however, the magnitude range of this study is too narrow to draw a definite conclusion on source scaling characteristics. The obtained moment magnitude Mw and the local magnitude ML are linearly correlated and approximately equivalent in the range of Mw 3–4. For larger events, Mw generally underestimates ML by about 0.1–0.5 magnitude units. The estimated site amplification functions for horizontal component (GIT H) are nearly flat with no obvious pre-dominant frequency peaks for most stations, as expected for the sites of permanent broad-band seismic stations located on rock, though a few stations show amplification peaks from 1 to 8 Hz, with a maximum amplification of about a factor of 7 with respect to the reference site. The evaluated site responses for the vertical components present remarkable amplification or deamplification, leading to differences of the H/V amplitude levels in comparison with the GIT H amplification curves. The results of this study provide a valuable basis for predicting appropriate ground motions in a context of seismic hazard assessment.


Sign in / Sign up

Export Citation Format

Share Document