scholarly journals Land use analysis of Lake Khanka basin using remote sensing data

2021 ◽  
Vol 895 (1) ◽  
pp. 012007
Author(s):  
K Yu Bazarov ◽  
E G Egidarev ◽  
N V Mishina

Abstract The paper presents results of the analysis of the land use map compiled for transboundary Lake Khanka Basin using remote sensing data and geoinformation systems. The map reflects the distribution of 12 land categories in Lake Khanka basin in 2017 (arable land, abandoned arable land, paddy field, abandoned paddy field, shrubs and sparse growth, forest land, open pit, settlements, meadows and pastures, wet meadows and marshes, water bodies, forest cuttings and fire sites). The data of land use structure in the whole Lake’s watershed, in its Russian and Chinese parts are given. Data on the distribution of different land categories in the administrative territories of the rank of districts (Russia) and counties (China) are also presented. The analysis of land use structure showed that about 50 % of the Chinese part of the basin is covered by anthropogenically transformed natural complexes. The share of such lands in the territory of Russia amounts to 28 %. Agriculture is the most important factor in the change of natural complexes in Lake Khanka basin. Before early 1990s, the area of farmland had increased in the basin on both sides of the border, after that there was a significant reduction in cultivated lands, which had lasted for 10 years in the territory of China and for 20 years in Russia. Over the past decade, the area of cultivated areas in the basin and adjacent territories has extended again, which indicates an increase of anthropogenic impact and requires serious attention to monitoring of the ecological state of lands in the basin.

Formulation of the problem. The Tatarbunars’kyi District is located in the southwestern part of Odessa region and reflects the main features of the landscape-economic structure of the region: water, agricultural, resort and environmental areas. On the other hand, the form of land use is characterized by widespread plowing of land with degradation and erosion of soil cover. Land structure and use patterns have a complex negative impact on ecological and economic processes and cannot ensure the sustainable development of the region, in particular it is antagonistic to the unique transitional wetland ecosystems of international importance located within the area. To solve the issues of balanced environmental management and zoning of the landscape and economic structure of the region, Earth remote sensing (ERS) data can be used - spectrozonal satellite imagery and geographic information systems (GIS), which can simultaneously cover the research area as a whole, carry out regular monitoring and significantly reduce costs by expensive expeditionary work. Using space monitoring data allows you to get a large array of characteristics of the state of the territorial complexes of the region. Purpose of the work is: assessment of the ecological state of the landscape economic structure and development of recommendations for the protection of natural and territorial complexes of the Tatarbunar’skyi District of Odessa region based on the use of GIS and remote sensing data. Methods. Landsat8 satellite images with OLI and TIRS sensors, digital terrain models (SRTM) with a spatial resolution of 30 m were used as initial data. The spatial distribution of the population was carried out on the basis of OpenStreetMap data using automatic interpolation using the IDW method. Spatial analysis and data processing were carried out in the QGIS v3.4.6 software package. To quantify the vegetation cover, the Normalized Difference Vegetation Index - NDVI was calculated. Waterlog distribution was estimated using a modified normalized differential moisture index (NDMI). The analysis of the structure of land use and anthropogenic load was carried out on the basis of ranking of territorial objects into homogeneous groups to calculate geoecological coefficients. Results. The article discusses the possibilities of using Earth remote sensing data for a functional assessment of land changes as a result of anthropogenic activities, primarily arable land, analyzes the ecological and economic equilibrium of the region based on geoecological coefficients, identifies areas that are primarily exposed to environmental risks, exogenous processes and the impact anthropogenic factors. Measures are proposed to increase the environmental sustainability of agrolandscapes and the landscape-anthropogenic structure of the region’s lands. A detailed hydrological and morphometric analysis of the catchment basin was carried out. Karachaus within the boundaries of the District. For the catchment estuary, remediation and nature conservation measures based on GIS are proposed and designed.


2015 ◽  
Vol 19 (1) ◽  
pp. 507-532 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen

Abstract. The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and not generally accessible. Remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of seasonal to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, the absolute values of evapotranspiration can be estimated with an overall accuracy of 95% (SD 5%) and rainfall with an overall absolute accuracy of 82% (SD 15%). Land use can be identified with an overall accuracy of 85% (SD 7%). Hence, more scientific work is needed to improve the spatial mapping of rainfall and land use using multiple space-borne sensors. While not always perfect at all spatial and temporal scales, seasonally accumulated actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling.


Author(s):  
Hua Ding ◽  
Ru Ren Li ◽  
Li Shuang Sun ◽  
Xin Wang ◽  
Yu Mei Liu

2021 ◽  
Vol 3 ◽  
pp. 180-185
Author(s):  
Y. M. Kenzhegaliyev ◽  
◽  
◽  

The goal -is to explore ways of using Earth remote sensing data for efficient land use. Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected. Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity. Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.


Sign in / Sign up

Export Citation Format

Share Document