" Land-Use Structure Dynamics Analysis Using the Earth Remote Sensing Data "

Author(s):  
А.О. Avvakumova ◽  
2021 ◽  
Vol 3 ◽  
pp. 180-185
Author(s):  
Y. M. Kenzhegaliyev ◽  
◽  
◽  

The goal -is to explore ways of using Earth remote sensing data for efficient land use. Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected. Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity. Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.


2019 ◽  
Vol 53 (1) ◽  
pp. 80-94
Author(s):  
Ihor V. Kholoshyn ◽  
Iryna M. Varfolomyeyeva ◽  
Olena V. Hanchuk ◽  
Olga V. Bondarenko ◽  
Andrey V. Pikilnyak

The article dwells upon the Earth remote sensing data as one of the basic directions of Geo-Information Science, a unique source of information on processes and phenomena occurring in almost all spheres of the Earth geographic shell (atmosphere, hydrosphere, lithosphere, etc.). The authors argue that the use of aerospace images by means of the information and communication technologies involvement in the learning process allows not only to increase the information context value of learning, but also contributes to the formation of students’ cognitive interest in such disciplines as geography, biology, history, physics, computer science, etc. It has been grounded that remote sensing data form students’ spatial, temporal and qualitative concepts, sensory support for the perception, knowledge and explanation of the specifics of objects and phenomena of geographical reality, which, in its turn, provides an increase in the level of educational achievements. The techniques of aerospace images application into the modern school practice have been analyzed and illustrated in the examples: from using them as visual aids, to realization of practical and research orientation of training on the basis of remote sensing data. Particular attention is paid to the practical component of the Earth remote sensing implementation into the modern school practice with the help of information and communication technologies.


2019 ◽  
Vol 948 (6) ◽  
pp. 39-47
Author(s):  
V.F. Chekalin ◽  
A.A. Sukhov

The article deals with modern photogrammetric production’s problems appearing at processing the Russian Earth remote sensing data. It is found out that todaythe main of them consists in the absence till now of the working system fortransferring linear and angular measures from national standard to the workingmeasuring devices. The necessity of creating a three-staged calibration scheme, which would guarantee the highest accuracy and stability of operating on-board measuring equipment, is justified. In addition, it is noted, that the existing technology of Earth remote sensing data processing does notprovide correct using of calibrated metrological parameters of the measuring equipment. The suggestions for eliminating that imperfection are given. The essence of the flight calibration principle foron-board equipment is formulated. The necessary list of the surveying systems’ metrological parameters and target equipment is defined.


2021 ◽  
Vol 895 (1) ◽  
pp. 012007
Author(s):  
K Yu Bazarov ◽  
E G Egidarev ◽  
N V Mishina

Abstract The paper presents results of the analysis of the land use map compiled for transboundary Lake Khanka Basin using remote sensing data and geoinformation systems. The map reflects the distribution of 12 land categories in Lake Khanka basin in 2017 (arable land, abandoned arable land, paddy field, abandoned paddy field, shrubs and sparse growth, forest land, open pit, settlements, meadows and pastures, wet meadows and marshes, water bodies, forest cuttings and fire sites). The data of land use structure in the whole Lake’s watershed, in its Russian and Chinese parts are given. Data on the distribution of different land categories in the administrative territories of the rank of districts (Russia) and counties (China) are also presented. The analysis of land use structure showed that about 50 % of the Chinese part of the basin is covered by anthropogenically transformed natural complexes. The share of such lands in the territory of Russia amounts to 28 %. Agriculture is the most important factor in the change of natural complexes in Lake Khanka basin. Before early 1990s, the area of farmland had increased in the basin on both sides of the border, after that there was a significant reduction in cultivated lands, which had lasted for 10 years in the territory of China and for 20 years in Russia. Over the past decade, the area of cultivated areas in the basin and adjacent territories has extended again, which indicates an increase of anthropogenic impact and requires serious attention to monitoring of the ecological state of lands in the basin.


Sign in / Sign up

Export Citation Format

Share Document