scholarly journals An overview of environmental impacts of lighting products at the end of life stage through life cycle impact assessment

2021 ◽  
Vol 899 (1) ◽  
pp. 012040
Author(s):  
C J Grigoropoulos ◽  
L T Doulos ◽  
S C Zerefos ◽  
A Tsangrassoulis

Abstract Life Cycle Impact Assessment (LCIA) of lighting products is a methodology that analyses and evaluates environmental impacts throughout their total life cycle, from the extraction and processing of raw materials, design, construction, transportation, distribution, use, recycling and re-use of materials, and last their final disposal. According to the results of a large number of LCIAs, lighting products have a substantial environmental impact in multiple areas, as for example in primary energy, toxicological effects, the effect on global warming, the level of environmental acidification, etc. All of those impacts could result in more efficient products by enhancing the product design process (using Ecodesign). At the initial design stage of lighting products, the manufacturer should also take into consideration circular economy aspects at the End of Life stage (EoL) such as repair, reuse, remanufacturing, retrofitting, recycling, and upcycling and not only the energy savings from the use stage or the selection of raw materials. The scope of this paper is to collect and present an overview of all environmental impacts of LCIA analyses focusing at EoL stage of lighting products. Those impacts could be used as data input into a future model that determines which lighting products are more environmentally friendly.

Data in Brief ◽  
2020 ◽  
Vol 33 ◽  
pp. 106487
Author(s):  
Jorge Senán-Salinas ◽  
Junkal Landaburu-Aguirre ◽  
Alberto Blanco ◽  
Raquel García-Pacheco ◽  
Eloy García-Calvo

Author(s):  
Yucho Sadamichi ◽  
Seizo Kato

Japan imports almost all of the energy resources with 40% of them used for electricity generation. Electricity is generated mainly by five types of power plants (LNG-fired, LNG-CC, oil-fired, coal-fired, and nuclear), which have various environmental impacts, for example, fossil fuel depletion, global warming, acid rain, etc.The purpose of this paper is to make a life cycle assessment (LCA) of the electricity generating processes of power plants in Japan and to suggest some concrete measures to reduce the environmental impacts.Our study proceeds as follows. We focus on the fuel procuring process reflecting Japan's import of fuel resources and then the whole electricity generating process of the different types of power plants. Firstly, we quantify the environmental loads resulting from each type of plant by Life Cycle Inventory (LCI) analysis. Secondly, Life Cycle Impact Assessment (LCIA) method is applied to evaluate the total impacts of each type of plant. Thirdly, we make some concluding remarks on reduction of the environmental impacts. LCI analysis and LCIA evaluation are done with use of the 'LCA-NETS' scheme we have developed.Our LCIA evaluation shows that in the fuel procuring process nuclear plants rank top, coal-fired plants second, oil-fired plants third, and LNG-fired plants bottom in the ascending (better) order of the `NETS/MJ' values, and that in the whole electricity generating process LNG-CC plants rank top, LNG-fired and coal-fired plants second, oil-fired plants third and nuclear plants last in the ascending (better) order of the `NETS/kWh' values.Our findings about the fuel procuring process imply that if LNG-fired plants can find an effective usage of their byproduct of cold energy or import natural gas without liquefaction directly from nearby countries, they will rank up next to nuclear plants and that if any legal regulations of desulfurization are imposed on sea transportation the impacts of crude oil and coal will be reduced a great deal.It follows from the total evaluation of the whole electricity generating process that if coal-fired plants can reduce the total impacts by 20% by introducing a technology of coal gasification they will be superior to LNG-CC plants and that if nuclear plants can adopt a technology of recycling uranium to reduce the total impacts by 50% they will be as good as LNG-CC plants.


2017 ◽  
Vol 165 ◽  
pp. 762-776 ◽  
Author(s):  
Julian T.M. Pinto ◽  
Karen J. Amaral ◽  
Susanne Hartard ◽  
Paulo R. Janissek ◽  
Klaus Helling

2021 ◽  
Vol 13 (2) ◽  
pp. 580
Author(s):  
Voicu-Teodor Muica ◽  
Alexandru Ozunu ◽  
Zoltàn Török

(1) Background: The importance of Zinc in today’s world can hardly be exaggerated—from anticorrosion properties, to its durability, aesthetic, and even medicinal uses—zinc is ever-present in our daily lives ever since its discovery in ancient times. The natural, essential, durable, and recyclable features of zinc make it a prized material with uses in many applications across a wide array of fields. The purpose of this study was to compare two life cycle impact assessments of zinc production by using two different main raw materials: (A) zinc concentrates (sulfide ore) and (B) Waelz oxides (obtained through recycling existing imperial smelting process furnace slags). The Waelz oxide scenario was based on a case study regarding the existing slag deposit located in Copsa Mica town, Sibiu county, Romania. (2) Methods: consequential life cycle impact assessment methods were applied to each built system, with real process data obtained from the case study enterprise. (3) Results: Overall, the use of slags in the Waelz kiln to produce zinc oxides for use in the production of zinc metal is beneficial to the environment in some areas (acidification, water, and terrestrial eutrophication), whereas in other areas it has a slightly larger impact (climate change, photochemical ozone formation, and ozone depletion). (4) Conclusions: The use of slags (considered a waste) is encouraged to produce zinc metal, where available. The results are not absolute, suggesting the further need for fine-tuning the input data and other process parameters.


Sign in / Sign up

Export Citation Format

Share Document