Combined Field and Structure from Motion Survey to Identify Rock Discontinuity Sets of Aa Shallow Rockslide

2021 ◽  
Vol 906 (1) ◽  
pp. 012103
Author(s):  
Alberto Bolla ◽  
Alberto Beinat ◽  
Paolo Paronuzzi ◽  
Chiara Peloso

Abstract The present work shows the results of a combined field and Structure from Motion (SfM) survey performed on the detachment surface of a shallow rockslide that occurred in the Rosandra Valley (Trieste, NE Italy), which was aimed at testing the use of 3D models obtained from Remote Sensing (RS) techniques to identify joint sets affecting unstable rock masses. According to discontinuity orientation data acquired from the field (N = 223), the investigated rock mass is affected by at least nine joint sets characterised by a notable variability. The extraction of joint sets from the 3D point cloud representing the surveyed rock outcrop was strongly sensitive to the point cloud density and the values of the controlling parameters of the density function embedded within the discontinuity extractor. This work demonstrates that, in order to properly identify rock joint sets, the exclusive application of a RS approach cannot fully substitute the traditional field survey, and the estimation of discontinuity sets should be integrated with joint orientation data acquired using a geological compass. To maximise its capabilities, the semi-automatic discontinuity set extraction from 3D point clouds should always be supported by a significant statistical sample of joint orientation measurements that are preliminarily collected from the field.

2021 ◽  
Vol 11 (13) ◽  
pp. 5941
Author(s):  
Mun-yong Lee ◽  
Sang-ha Lee ◽  
Kye-dong Jung ◽  
Seung-hyun Lee ◽  
Soon-chul Kwon

Computer-based data processing capabilities have evolved to handle a lot of information. As such, the complexity of three-dimensional (3D) models (e.g., animations or real-time voxels) containing large volumes of information has increased exponentially. This rapid increase in complexity has led to problems with recording and transmission. In this study, we propose a method of efficiently managing and compressing animation information stored in the 3D point-clouds sequence. A compressed point-cloud is created by reconfiguring the points based on their voxels. Compared with the original point-cloud, noise caused by errors is removed, and a preprocessing procedure that achieves high performance in a redundant processing algorithm is proposed. The results of experiments and rendering demonstrate an average file-size reduction of 40% using the proposed algorithm. Moreover, 13% of the over-lap data are extracted and removed, and the file size is further reduced.


Author(s):  
A. Mostafavi ◽  
M. Scaioni ◽  
V. Yordanov

Abstract. The realistic possibility of using non-metric digital cameras to achieve reliable 3D models has eased the application of photogrammetry in different domains. Documentation, conservation and dissemination of the Cultural Heritage (CH) can be obtained and implemented through virtual copies and replicas. Structure-from-Motion (SfM) photogrammetry has widely proven its impressive potential for image-based 3D reconstruction resulting in great 3D point clouds’ acquisitions but at minimal cost. Images from Unmanned Aerial Vehicles (UAVs) can be also processed within SfM pipeline to obtain point cloud of Cultural Heritage sites in remote regions. Both aerial and terrestrial images can be integrated to obtain a more complete 3D. In this paper, the application of SfM photogrammetry for surveying of the Ziggurat Chogha Zanbil in Iran is presented. Here point clouds have been derived from oblique and nadir photos captured from UAV as well as terrestrial photos. The obtained four point clouds have been compared on the basis of different techniques to highlight differences among them.


Author(s):  
N. Haala ◽  
M. Kölle ◽  
M. Cramer ◽  
D. Laupheimer ◽  
G. Mandlburger ◽  
...  

Abstract. This paper presents a study on the potential of ultra-high accurate UAV-based 3D data capture by combining both imagery and LiDAR data. Our work is motivated by a project aiming at the monitoring of subsidence in an area of mixed use. Thus, it covers built-up regions in a village with a ship lock as the main object of interest as well as regions of agricultural use. In order to monitor potential subsidence in the order of 10 mm/year, we aim at sub-centimeter accuracies of the respective 3D point clouds. We show that hybrid georeferencing helps to increase the accuracy of the adjusted LiDAR point cloud by integrating results from photogrammetric block adjustment to improve the time-dependent trajectory corrections. As our main contribution, we demonstrate that joint orientation of laser scans and images in a hybrid adjustment framework significantly improves the relative and absolute height accuracies. By these means, accuracies corresponding to the GSD of the integrated imagery can be achieved. Image data can also help to enhance the LiDAR point clouds. As an example, integrating results from Multi-View Stereo potentially increases the point density from airborne LiDAR. Furthermore, image texture can support 3D point cloud classification. This semantic segmentation discussed in the final part of the paper is a prerequisite for further enhancement and analysis of the captured point cloud.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 75
Author(s):  
Dario Carrea ◽  
Antonio Abellan ◽  
Marc-Henri Derron ◽  
Neal Gauvin ◽  
Michel Jaboyedoff

The use of 3D point clouds to improve the understanding of natural phenomena is currently applied in natural hazard investigations, including the quantification of rockfall activity. However, 3D point cloud treatment is typically accomplished using nondedicated (and not optimal) software. To fill this gap, we present an open-source, specific rockfall package in an object-oriented toolbox developed in the MATLAB® environment. The proposed package offers a complete and semiautomatic 3D solution that spans from extraction to identification and volume estimations of rockfall sources using state-of-the-art methods and newly implemented algorithms. To illustrate the capabilities of this package, we acquired a series of high-quality point clouds in a pilot study area referred to as the La Cornalle cliff (West Switzerland), obtained robust volume estimations at different volumetric scales, and derived rockfall magnitude–frequency distributions, which assisted in the assessment of rockfall activity and long-term erosion rates. An outcome of the case study shows the influence of the volume computation on the magnitude–frequency distribution and ensuing erosion process interpretation.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 94 ◽  
Author(s):  
Hriday Bavle ◽  
Jose Sanchez-Lopez ◽  
Paloma Puente ◽  
Alejandro Rodriguez-Ramos ◽  
Carlos Sampedro ◽  
...  

This paper presents a fast and robust approach for estimating the flight altitude of multirotor Unmanned Aerial Vehicles (UAVs) using 3D point cloud sensors in cluttered, unstructured, and dynamic indoor environments. The objective is to present a flight altitude estimation algorithm, replacing the conventional sensors such as laser altimeters, barometers, or accelerometers, which have several limitations when used individually. Our proposed algorithm includes two stages: in the first stage, a fast clustering of the measured 3D point cloud data is performed, along with the segmentation of the clustered data into horizontal planes. In the second stage, these segmented horizontal planes are mapped based on the vertical distance with respect to the point cloud sensor frame of reference, in order to provide a robust flight altitude estimation even in presence of several static as well as dynamic ground obstacles. We validate our approach using the IROS 2011 Kinect dataset available in the literature, estimating the altitude of the RGB-D camera using the provided 3D point clouds. We further validate our approach using a point cloud sensor on board a UAV, by means of several autonomous real flights, closing its altitude control loop using the flight altitude estimated by our proposed method, in presence of several different static as well as dynamic ground obstacles. In addition, the implementation of our approach has been integrated in our open-source software framework for aerial robotics called Aerostack.


Author(s):  
Uzair Nadeem ◽  
Mohammad A. A. K. Jalwana ◽  
Mohammed Bennamoun ◽  
Roberto Togneri ◽  
Ferdous Sohel

Author(s):  
T. Fiolka ◽  
F. Rouatbi ◽  
D. Bender

3D terrain models are an important instrument in areas like geology, agriculture and reconnaissance. Using an automated UAS with a line-based LiDAR can create terrain models fast and easily even from large areas. But the resulting point cloud may contain holes and therefore be incomplete. This might happen due to occlusions, a missed flight route due to wind or simply as a result of changes in the ground height which would alter the swath of the LiDAR system. This paper proposes a method to detect holes in 3D point clouds generated during the flight and adjust the course in order to close them. First, a grid-based search for holes in the horizontal ground plane is performed. Then a check for vertical holes mainly created by buildings walls is done. Due to occlusions and steep LiDAR angles, closing the vertical gaps may be difficult or even impossible. Therefore, the current approach deals with holes in the ground plane and only marks the vertical holes in such a way that the operator can decide on further actions regarding them. The aim is to efficiently create point clouds which can be used for the generation of complete 3D terrain models.


Sign in / Sign up

Export Citation Format

Share Document