scholarly journals Study of Some Hydraulic Parameters of A solar-Powered Drip Irrigation System

2021 ◽  
Vol 910 (1) ◽  
pp. 012015
Author(s):  
Hussein Razzaq Nayyef

Abstract An experiment was carried out in Al-Rifai District - Dhi Qar Governorate, to study the effect of the distance between drippers and their discharge on friction losses, coefficient of variation, and emission consistency of the drip irrigation system. Spiral drippers with a design discharge of 4 and 8 L.hr"1. While the emitters were installed at distances of 20, 40, 60 (cm). The actual discharge of the droplets was measured and the friction losses, emission consistency coefficient, and discharge variance ratio were calculated. The results showed that the distance between the emitters 60 cm gave the lowest percentage of friction losses, which amounted to 0.165, 0.204 (m) for drippers with design drainage of 4, 8 L.hr-1. The best values of the emission consistency coefficient and the variance ratio in the emitters discharge were 95.44 and 28.41% when using the 8L.hr-1 and the distance between the emitters is 60 cm, respectively.

2021 ◽  
Vol 904 (1) ◽  
pp. 012013
Author(s):  
B A AL-Dulaimi ◽  
Sh M AL-Mehmdy

Abstract A field experiment was conducted in Jazeerah Al-Ramadi/Al-Hamidiyah research station (latitude33^o 27^’ 〖 11.9 〗 ^(՚՚)N, longitude 43^o 23^’ ^(՚՚) E (duration 2020. This study was conducted to investigate the effect of pipe types and emitters discharge on performance criteria of surface drip irrigation system. Therefore, a two factorial experiment was set as randomized complete block design with three replications. The first factor included the type of pipes and emitters, namely Turbo, GR and T-Tape. While the second factor involved the emitters discharge which consist of two levels i.e., 4 (D4) and 8 (D8) L.h-1. The irrigation system was initially evaluated in the field before planting by testing three operating pressures (50, 100 and 150 Kpa) to determine the actual discharge of the emitters closed to their design discharge (4 and 8 L.h-1) for each emitter to calculate the manufacturing coefficient of variation (CV), distribution uniformity and the discharge variation ratio at each operating pressure. Results showed that the best discharge (Closed to design discharge of 4 L.h-1) was obtained at the 50 Kpa operating pressure which gave 3.99,3.90 and 3.81 L.h-1 when using the T-Tape pipe and GR and Turbo emitter compare when the discharge of 8L.h-1 has been used which gave 7.96, 7.84 and 7.59 L.h-1 when the former pipe and emitters were used. The best coefficient of variation was observed when the T-Tape pipe and GR and Turbo emitter were used with discharge of 4 L.h-1 up to 0.1300, 0.2200 and 0.2600 compare to 0.1300, 0.2700 and 0.3500 when the same former pipe and emitters were used with discharge of 8L. h-1. Similarly, the best distribution uniformity was obtained when the T-Tape pipe and GR and Turbo emitter has been used with discharge of 4 L.h-1 which gave 94.68, 91.74 and 90%. Likewise, the most acceptable variety discharge ratio was observed when the same prior pipe and emitters were used with discharge of 4 L.h-1 by giving 7.23, 11.90 and 12.19 %.


2018 ◽  
Author(s):  
Steve Andrew Miller ◽  
Ajit Srivastava ◽  
Steven Marquie ◽  
Youngsuk Dong ◽  
Lyndon Kelley ◽  
...  

2021 ◽  
Vol 105 (1) ◽  
pp. 291-296
Author(s):  
Kristýna Jandová ◽  
Marcel Janda

This article deals with the issue of solar-powered irrigation, specifically, by connecting a solar power source to a drip irrigation system. Thanks to an independent energy source the irrigation system is able to work anywhere. In addition to energy independence, thanks to the drip mode of irrigation, another benefit is water saving, which is up to 70% compared to conventional irrigation. The simplicity of this system allows use both in small gardens and in agriculture. Another advantage of the system is its expandability with various sensors (e.g. soil moisture monitoring), which will help with more efficient management of watering.


2017 ◽  
Vol 9 (4) ◽  
pp. 2261-2263
Author(s):  
Mairaj Hussain ◽  
Sudhiranjan Prasad Gupta

Drip irrigation technology will undoubtedly plays an important role in the future of the agriculture. A field experiment was conducted to evaluate the performance of drip system with five operating pressure viz. I1 (0.4 kg/ cm2), I2 (0.6 kg/cm2), I3 (0.8 kg/cm2), I4 (1.0 kg/cm2), I5 (1.2 kg/cm2). It was observed that the average discharge of drippers was 1.08 lph, 1.24 lph, 1.50 lph, 1.62 lph and 1.74 lph and emission uniformity was 80.55%, 84.89%, 86.30%, 88.88% and 90.80 in each treatment respectively and coefficient of variation was observed 0.12, 0.13, 0.12, 0.11, and 0.09. Flow component was found 0.450 and the value of k was 0.572 while R2 was observed 0.986.Based on the result it can be concluded that the operation of drip irrigation system at 1.2 kg/cm2 pressure head, gives the maximum efficiency in respect of discharge, emission uniformity and coefficient of variation.


In the agriculture field, the method of irrigation and its proper usage is more important and it is well known that a very economical and efficient method is drip irrigation. The continuous monitoring of the soil and weather condition has to be done by the farmer in favour of growth of crops in conventional drip irrigation system. In this proposed system, the soil and weather condition of the field are monitored by the moisture as well as temperature sensor. The values from the temperature and moisture sensors are sensed and the signal is sent to the Arduino IDE controller which is powered by solar energy and thus the present values are compared with predefined values. According to value of the temperature and moisture, the crops can be supplied with the required amount of water. In the liquid crystal display, the sensed values of the temperature and moisture will be displayed and the user can receive the data through the GSM module.


Author(s):  
M. W. Akram ◽  
Yi Jin ◽  
Guiqiang Li ◽  
Zhu Changan ◽  
J. Aiman

Author(s):  
Eddy Herman Sharu

Irrigation is the most important component in ensuring that crops can produce optimal yields. The use of drip irrigation can help farmers in providing water to crops in the amount required by the crop. Drip irrigation usually uses an uncompensated dripper and also a pressure compensated dripper. The use of an uncompensated dripper requires precise pressure to ensure a uniform flow for each dripper while the use of a pressure compensated dripper will also provide a uniform flow when operating pressure was used within the range specified by the dripper manufacturer. The purpose of this study is to evaluate the hydraulic performance of the drip irrigation system using low pressure compared to the minimum pressure recommended by dripper manufacturers. The pressure operation recommended by the manufacturer is 1.5-4 bars. This study uses pressures as low as 1 bar (low pressure), 2 bars, and 2.5 bars (recommended by manufacture) to operate this irrigation system. The volumetric approach was used to calculate each emitter's flow rate. Coefficient uniformity (CU), emission uniformity (EU), coefficient of variation (CV), and emitter flow variation (EFV) were the hydraulic parameters evaluated. The results show that CU, CV, and EU are in excellent classification, and the value for CU and the EU is more than 95 percent efficiency. The CV value is below 0.03 which is a very good classification. Meanwhile, emitter flow variation is 10% when operating at 2.5 bars and 2.0 bars and is considered the desirable classification. On the other hand, the emitter flow variation was reported at 6% for the 1 bar operating pressure and the classification was also recorded in the desirable classification. The results conclude that the use of low operating pressure compared to the minimum operating pressure proposed by the manufacturer can also operate in excellent condition according to the hydraulic parameters evaluated.


Sign in / Sign up

Export Citation Format

Share Document