scholarly journals Accuracy Assessment of Satellite Derived Bathymetry Model for Depth Extraction in Sorong Shallow Water Area

2021 ◽  
Vol 925 (1) ◽  
pp. 012053
Author(s):  
Ratna Sari Dewi ◽  
Aldino Rizaldy

Abstract Marine research has continuously improved the methods in obtaining the related bathymetric data; not only relying on the conventional methods for i.e. echosounder-based methods, but also by incorporating satellite technology for i.e. passive remote sensing technology, in this case, satellite derived bathymetry (SDB). Regarding the SDB method, as we know, variation of sea bed cover can influence the relation between the spectral reflection of shallow water area and the depth of the sea. In this situation, normalization of the sea bed variation is needed. Previous studies have mentioned that the band ratio can help to normalize the variation of sea bed cover. This research is intended to compare the accuracy of satellite derived bathymetry by using single band and band ratio. Four bands of Sentinel 2A (blue, green, red, and NIR bands) are used along with a single beam echosounder (SBES) measurement data published in 2015 used as training and testing data for the SDB model. Furthermore, the influence of sun glint correction to the results was evaluated and the accuracy of the model was estimated. In total there are four single bands and six combinations of band ratio that are used for this research. The results show that green band outperformed band ratio in term of RMSE value. However, visually, only band ratio of blue/green band that provided a much more representative depth spatial distribution especially for shallow water area below 3 m. In this case, band ratio is effective in normalizing the variation of sea bed cover. Furthermore, the use of sun glint correction in the process is also increase accuracies of the SDB model. The highest accuracy was obtained when using green band after sun glint correction with RMSE value 2.999 m while when using band ratio of the blue band to the green band (blue/green), the accuracy was 3.624 m. In conclusion, SDB model to extend methods in obtaining bathymetry data is promising as more images become available free of charge and in various resolutions.

2015 ◽  
Vol 74 (5) ◽  
Author(s):  
Muhammad Zikra ◽  
Noriaki Hashimoto ◽  
Masaru Yamashiro ◽  
Kojiro Suzuki

In this paper, analysis of directional wave spectra in shallow water area estimated by video images data has been compared with numerical model of SWAN. Estimation of directional wave spectra from video images is based on the Bayesian Directional Method using a group of pixels brightness on the image. For this study, the pixels can be considered equivalent to fixed instruments as wave probe sensor after rectification process. The results show that there is a good agreement between directional wave spectra estimated by video images data and the SWAN model. Both methods estimate similar shape of directional wave spectra in the shallow water. In addition, the energy distribution of directional wave spectra in shallow water is concentrated significantly in frequency and direction. 


2000 ◽  
Vol 108 (5) ◽  
pp. 2578-2578
Author(s):  
Peter L. Nielsen ◽  
Martin Siderius ◽  
Finn B. Jensen

Author(s):  
N. M. Said ◽  
M. R. Mahmud ◽  
R. C. Hasan

Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.


1974 ◽  
Vol 1 (14) ◽  
pp. 6
Author(s):  
J.S. Driver ◽  
J.D. Pitt

An instrumentation system to record direct measures of both wind and wave conditions has been installed at the Wash. Data from these instruments are used in conjunction with long term wind records from another station to predict the frequency and duration of extreme conditions.


2008 ◽  
Vol 123 (5) ◽  
pp. 3510-3510
Author(s):  
Matthias Meyer ◽  
Jean‐Pierre Hermand ◽  
Mohamed Berrada ◽  
Mark Asch

Sign in / Sign up

Export Citation Format

Share Document