probe sensor
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 289
Author(s):  
Jiahao Guo ◽  
Siping Lian ◽  
Ying Zhang ◽  
Yufeng Zhang ◽  
Dezhi Liang ◽  
...  

In this paper, a fiber probe high-temperature sensor based on the Michelson Interferometer (MI) is proposed and experimentally verified. We used a fiber splicing machine to fabricate a taper of the single-mode fiber (SMF) end. The high order modes were excited at the taper, so that different modes were transmitted forward in the fiber and reflected by the end face of the fiber and then recoupled back to the fiber core to form MI. For comparison, we also coated a thin gold film on the fiber end to improve the reflectivity, and the reflection intensity was improved by 16 dB. The experimental results showed that the temperature sensitivity at 1506 nm was 80 pm/°C (100 °C~450 °C) and 109 pm/°C (450 °C~900 °C). The repeated heating and cooling processes showed that the MI structure had good stability at a temperature up to 900 °C. This fiber probe sensor has the advantages of a small size, simple structure, easy manufacturing, good stability, and broad application prospects in industrial and other environments.


2021 ◽  
Author(s):  
Pasi Laakkonen ◽  
Antti Nissinen ◽  
Ossi Lehtikangas ◽  
Jouni Hartikainen ◽  
Pekka Kaunisto ◽  
...  

Abstract Objectives/Scope Mature fields operations, which are almost 70% of today's production have a high water cut content. For each barrel of oil produced there can be 3 or more barrels of water. This means that operational conditions are challenging and might not be ideal for the facilities. In crude oil tanks, one of the most crucial operation parameter is the settling time of oil and water. Especially with heavy oils and high water cut, the operational conditions can be challenging with the existence of emulsion/rag layers in the tank. Most common level detection instrumentation struggle with detecting the proper interface levels leading to faulty control that can cause costly remediation and loss of revenue. This paper presents a novel solution by applying electric tomography pipe and probe sensors. Methods, Procedures, Process In electrical tomography, multiple electrodes are attached on the surface of the sensor and excitations are applied to some electrodes and responses are measured from other electrodes. Assuming a fast separation in the following crude oil tank, the operator expects the flow being stratified already in incoming trunk line. In real life this is not often the case: The incoming flow is turbulent meaning that there is no clear water/oil interface. To overcome this a pipe sensor is needed to monitor the flow regime and hence there is a possibility to control the a) chemical feed and b) flow speed to get the flow stratified. As soon as the flow is stratified in a trunk line it will be guided to a crude oil settling tank for an additional separation. In this tank there is a possibility to apply a probe sensor to monitor reliably the emulsion layer between water and oil. This allows settling time, process parameters and chemicals to be optimized to get a clear separation and hence improving the oil and water quality for a further processing. Results, Observations, Conclusions Results from pipe sensor operation in crude oil pipelines will be shared. The results will show an accurate water cut profile across the pipe cross section even under stratified flow conditions. Additionally, probe sensor results in a crude oil tank operation will be shared and hence confirming the reliability and robustness of the probe sensor operation in tanks. One of the key features of the pipe and probe sensors is the full functionality even under severe contamination with deposits on the sensor surfaces. The operational principle of this method will be shared and verified by experimental results. Novel/Additive Information The sensor technology for the tank inspection and piping uses novel electrical tomography with compact electronic and fast-acting computation with high resolution. This type of technology for settling tank application is new.


2021 ◽  
Author(s):  
Maung Maung Myo Thant ◽  
M. Faizal Che Daud ◽  
Siti Nur Shaffee ◽  
Kien Kiet Chua ◽  
Antti Nissinen ◽  
...  

Abstract Measurement of sand build-up in the production separators has been a challenge for field personnel due to the limitations of current technologies. Nucleonic-type level profiler has been previously implemented in a few offshore locations but limited due to special handling and permit/license requirements of radioactive material involved. Therefore, this paper aims to present the acceleration of new non-nucleonic tomographic technology testing and qualification to measure accumulating sand in separators as well as multi-disciplinary approvals for fast-track field application. The general idea in tomography is to expose the target of interest to electrical signals and measure the response of the target. With the aid of mathematical models, it is possible to infer the distribution of different materials within the target from the responses. Results of tomographic measurements are displayed on a computer as a vertical profile. The tested tomographic solution was based on a tomographic technology called Electrical Tomography. The key idea in Electrical Tomographic image construction is to find a permittivity and conductivity distribution for which the observations predicted by the model are in good agreement with actual ET measurement data and hence profiling is to be created. The test was performed at the laboratory with a full tomographic profiler setup including a test probe sensor for profiling, electronics, and a computer unit. In addition to the tomographic instrumentation, a transparent plastic vessel was used for visual observations of the accumulated sand layers. Visual observations were made simultaneously with tomographic imaging. In the test setup, we had sand, water, emulsion, and oil. The samples were placed into a transparent vessel. It was visually observed that the probe sensor was able to distinguish "wet sand-water" interface and "water-oil interface" in all the tested conditions. At the end of the test, the sand layer was flattened and packed more tightly and the change in the layer thickness was seen in the tomographic image. We concluded that the resolution of the detection of the sand layer was in the range of 1-2 cm. The technology is novel as it is a non-nucleonic profiler and a field-safe technology to be used. The profiler is intrinsically safe and certified to the most demanding IECEx class to be used in Zone 0 hazardous atmospheres. Detailed engineering of the technology to be installed at one of the production separators has proceeded. Finite Element Analysis has shown that the system can withstand turbulent conditions within the multi-phase production separator.


Luminescence ◽  
2020 ◽  
Vol 35 (8) ◽  
pp. 1206-1216
Author(s):  
Shyamal Baruah ◽  
Merangmenla Aier ◽  
Amrit Puzari

Transmisi ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 15-21
Author(s):  
Muhammad Amin Sulthoni ◽  
Ndaru Anggit Wicaksono

Time Domain Reflectometry (TDR) adalah salah satu metode yang digunakan untuk mengukur kelembapan tanah. Cepat rambat gelombang elektromagnetik pada suatu medium atau probe berupa susunan logam berbentuk silinder atau pelat dipengaruhi oleh kelembapan tanah. Besarnya pengaruh kelembapan tanah ditentukan oleh struktur dan dimensi probe yang digunakan. Pada makalah ini akan disampaikan hasil studi yang membandingkan probe sensor yang menggunakan geometri probe silinder, plat paralel dan plat koplanar; serta sensor yang terdiri dari 2 atau 3 silinder/pelat. Pengujian akan dilakukan dengan 2 metode yaitu pemodelan elektrostatis probe menggunakan software dan pengukuran di laboratorium. Hasil pemodelan dan percobaan menunjukkan bahwa 2 probe plat koplanar merupakan geometri yang paling baik untuk diimplementasikan sebagai sensor pendeteksi kelembapan tanah dengan metode TDR.


2020 ◽  
Vol 12 (44) ◽  
pp. 5397-5406
Author(s):  
Aida Mousavi ◽  
Rouholah Zare-Dorabei ◽  
Seyed Hossein Mosavi

A new MIL-101(Fe)@amine-CQD fluorescent probe was synthesized to determine 6-MP via a post-synthetic method.


Sign in / Sign up

Export Citation Format

Share Document