scholarly journals Search for hydrogeochemical indicators of the genetic relation between mud volcanism and oil and gas fields

2021 ◽  
Vol 946 (1) ◽  
pp. 012029
Author(s):  
O A Nikitenko ◽  
V V Ershov

Abstract The paper reports the results of a comparative analysis of the chemical and isotope composition (δ180 and δD) of mud volcanic waters and formation waters from oil and gas fields. Studies show that the waters discharged by mud volcanoes in most cases are very similar to formation waters. The most characteristic geochemical traits of both waters are elevated concentrations of hydrocarbonate ions, iodine, boron, bromine, and a low content of sulfate ions.

Author(s):  
G. Gahramanov ◽  
M. Babayev ◽  
S. Shpyrko ◽  
Kh. Mukhtarova

We study the mechanisms of migration and spacial distribution of hydrocarbon deposits along a regional 1000 km long SW - NE seismic cross section of the South Caspian Basin. A retrospective 2D geological simulation of basin subsidence and sediment filling history is performed taking into account accompanying processes of thermal and catagenetic transformations of organic matter, and subsequent migration and accumulation of hydrocarbons. The start of the basin opening with accumulation of considerable sedimentary mass can be dated as middle Mesozoic (Triassic or Jurassic), and hydrocarbon prone horizons can now be located at depths of 12 km. The hydrocarbon saturation of the Pliocene Productive Series is of epigenetic (allochtonous) nature, which is also confirmed in literature by geochemical data from mud volcanoes and by other facts. Geochemical age, depth of provenance and reworking degree of hydrocarbons point at generation sources in Mesozoic (gas) and Paleogene-Miocene formations (oil) with only subordinate participation of the lower "Productive Series" Pliocene suites. The dominant migration pattern of fluids is interformational (interstratal) intermittent injective subvertical flow along disjunctive planes, zones of increased fracturing and loose rocks, diapir intrusion contacts, eruptives of mud volcanoes, lithofacial unconformities and other structures, breaking the rocks continuity. This implies the possibility of commercial-scale accumulations of hydrocarbons at ultra high depths, if trap structures of sufficiently large sizes are available, comparable with already discovered giant oil and gas fields (Shah-Deniz, Azeri-Chirag-Gyuneshli etc).


Author(s):  
Alexander T. Bekker ◽  
Olga A. Sabodash ◽  
Aleksey Yu. Kochev

In the study, the results of a statistical modeling of ice loads from drifting ice features on the ice-resistant platforms in Piltun-Astohsky and Lunsky oil&gas fields of “Sakhalin-I” and “Sakhalin-II” Projects are investigated. The authors made a comparative analysis of ice loads on various types of gravity-based concrete structures in ice conditions of the Sea of Okhotsk according to the standards, procedures and guidelines from different Codes of design. And also the probabilistic model of ice loads, developed by the authors in the previous studies, was considered for comparative analysis.


Author(s):  
V. N. Kholodov

The article discusses the patterns of placement of mud volcanoes, their spatial connection with tectonic faults, anticlinal uplifts, oil and gas fields. The connection of mud volcanic activity with ultrahigh pressures arising in the clay strata of the stratisphere as a result of phase transformations of clay minerals and organic matter is argued. The role of earthquakes in the formation of fractured clays, increasing their permeability and the formation of mud crates is emphasized. On the example of the mud volcano Aligula (Turkmenistan), the processes of dilution of sandstones and clays, the formation of volcanic mud-crates are considered.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

Author(s):  
A.V. Antonov ◽  
◽  
Yu.V. Maksimov ◽  
A.N. Korkishko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document