scholarly journals Effect of Metallic and Non-Metallic Fibre and Recycled Aggregate on High Strength Concrete

Author(s):  
S Sebastin ◽  
S M Murali Ram Kumar ◽  
M Franchis David
2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


Author(s):  
Mohammed Abed ◽  
Rita Nemes

The sustainability of engineering products has become a basic requirement instead of a mere choice because the harmony between economic activity and the earth’s ecosystem must be seriously considered. The influence of using three unprocessed waste powder materials as cement replacing materials (CRMs) and/or coarse recycled concrete aggregate (RCA) as a partial replacement of coarse natural aggregate (NA) on fresh and mechanical properties of self-compacting high-strength concrete (SCHSC) is investigated in this study. The activation index of the CRMs on the cement paste is tested as an initial step. The CRMs, namely, waste fly ash (WFA), waste perlite powder (WPP) and waste cellular concrete (WCC), are tested through 21 mixtures allocated by seven different series with three mixes of each. The mechanical properties of the 21 concrete mixes are determined after one, three and nine months of curing. Results of compressive strength, splitting tensile strength, flexural strength and modulus of elasticity are presented. This work shows that the mechanical and environmental performance of SCHSC can be improved by the replacement of NA by RCA of up to 50% and the replacement of cement by WPP or WFA of up to 15%. Using WCC is not recommended to be reached 15% and using WFA is preferable to be with incorporating RCA rather than NA alone. Findings indicate that incorporating waste materials can be valuable in SCHSC, thereby potentially leading to an increasingly green environment and paving the way for advancements in sustainable construction.


2013 ◽  
Vol 680 ◽  
pp. 226-229 ◽  
Author(s):  
Young Sang Cho ◽  
Sang Ki Baek ◽  
Yong Taeg Lee ◽  
Seung Hun Kim ◽  
Jun Ho Park ◽  
...  

Recently, many structures which were built about 30 years ago are watched by reconstruction. Demolished concrete is occurred in the process and these quantity increase about 10% more than the preceding year. Although the government have promoted to use recycled coarse aggregate, many registered architects have not use it, because natural aggregate is still cheaper than recycled coarse aggregate's price and they have question about quality of recycled coarse aggregate. In addition, there are no grounds to rely upon compressive strength and ultrasonic pulse velocity method of recycled coarse aggregate when it is used to high strength concrete. In this paper, bases will be adduced to verify applicative possibility of estimation of compressive strength of high-strength concrete with recycled aggregate using ultrasonic pulse velocity method. For this, compressive strength and ultrasonic pulse velocity method tests of 240 high strength concrete specimens with recycled coarse aggregate were performed, and the high strength concrete specimens were tested within the limits such as compressive strength and ultrasonic pulse velocity


Sign in / Sign up

Export Citation Format

Share Document