scholarly journals Modelling of the stress-strain state of the lower jaw

Author(s):  
A V Avilov ◽  
N V Avilova ◽  
E S Tananakina ◽  
E V Sadyrin
2019 ◽  
Vol 19 (1-2) ◽  
pp. 131-139
Author(s):  
D. A Trunin ◽  
A. V Revyakin ◽  
M. A Postnikov ◽  
I. N Kolganov ◽  
I. A Zakharova ◽  
...  

This work is devoted to the study of the stress-strain state (SSS) model by using the finite-elements method (FEM) of jaw-bones (the system of lower jaw (LJ) - upper jaw (UJ)) and is the next step in understanding the mechanism of mastication as one of the main functions of the maxillofacial system (MFS). At the same time, reliable information about SSS of the LJ and UJ bones with account of the peculiarities of their anatomical and topographical structure will, firstly, reveal the main regularities of the jaw bone deformations. It will make possible to choose prosthetic appliances that will provide the minimum level of intensity of atrophic processes in supporting tissues and the most favorable biomechanical interaction of bone structures, soft tissues and elements of the prosthetic appliance. The results of mathematical calculations allowed to identify the characteristic features of the deformation and interaction of the LJ and UJ bones, which will ensure a scientifically based choice of those prosthetic appliances contributing to the most prolonged and normal functioning of the maxillofacial system in general.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document