bpnn model
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 48)

H-INDEX

6
(FIVE YEARS 4)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Junbo Sun ◽  
Jiaqing Wang ◽  
Zhaoyue Zhu ◽  
Rui He ◽  
Cheng Peng ◽  
...  

High-strength concrete (HSC) is a functional material possessing superior mechanical performance and considerable durability, which has been widely used in long-span bridges and high-rise buildings. Unconfined compressive strength (UCS) is one of the most crucial parameters for evaluating HSC performance. Previously, the mix design of HSC is based on the laboratory test results which is time and money consuming. Nowadays, the UCS can be predicted based on the existing database to guide the mix design with the development of machine learning (ML) such as back-propagation neural network (BPNN). However, the BPNN’s hyperparameters (the number of hidden layers, the number of neurons in each layer), which is commonly adjusted by the traditional trial and error method, usually influence the prediction accuracy. Therefore, in this study, BPNN is utilised to predict the UCS of HSC with the hyperparameters tuned by a bio-inspired beetle antennae search (BAS) algorithm. The database is established based on the results of 324 HSC samples from previous literature. The established BAS-BPNN model possesses excellent prediction reliability and accuracy as shown in the high correlation coefficient (R = 0.9893) and low Root-mean-square error (RMSE = 1.5158 MPa). By introducing the BAS algorithm, the prediction process can be totally automatical since the optimal hyperparameters of BPNN are obtained automatically. The established BPNN model has the benefit of being applied in practice to support the HSC mix design. In addition, sensitivity analysis is conducted to investigate the significance of input variables. Cement content is proved to influence the UCS most significantly while superplasticizer content has the least significance. However, owing to the dataset limitation and limited performance of ML models which affect the UCS prediction accuracy, further data collection and model update must be implemented.


2022 ◽  
Author(s):  
Tao Xue ◽  
Long Chen ◽  
Zhen Zhang ◽  
Jiaquan Zhao ◽  
Yi Zhang ◽  
...  

Abstract This paper presents a framework of data-driven intelligence system which can be applied on magnetic field-assisted electrical discharge machining (MF-EDM) machining process for SiC particulate reinforced Al-based metal matrix composites (SiCp/Al) with different high-volume fractions. The implemented system consists of data modelling, predicating, optimization and monitoring modules. A multi-objective moths search (MOMS) optimization algorithm with back-propagation neural network (BPNN) model and multi-hierarchy non-dominated strategy is proposed for tuning optimal processing performance. Data are collected from machining different fraction volumes of SiCp/Al composites by MF-EDM, with peak current, magnetic, pulse width and pulse interval time as input, and material removal rate, electrode wear rate, surface roughness as output. The BPNN model shows the best accuracy compared to K-nearest neighbours, least square support vector machine and Kriging model. To demonstrate the effectiveness of the MOMS optimization algorithm, a set of results is selected as paradigm, which dominates 95.83% original experiments. A verification experiment is also done for an optimized parameter with 65% fraction and 0.2T magnetic. Both result data and three-dimensional surface topography comparison show that the verification experiment result dominates the original experiment of similar input designs.


2022 ◽  
pp. 1465-1477
Author(s):  
Mohamed Abdulhussain Ali Madan Maki ◽  
Suresh Subramanian

Email is one of the most widely used features of internet, and it is the most convenient method of transferring messages electronically. However, email productivity has been decreased due to phishing attacks, spam emails, and viruses. Recently, filtering the email flow is a challenging task for researchers due to techniques that spammers used to avoid spam detection. This research proposes an email spam filtering system that filters the spam emails using artificial back propagation neural network (BPNN) technique. Enron1 dataset was used, and after the preprocessing, TF-IDF algorithm was used to extract features and convert them into frequency. To select best features, mutual information technique has been applied. Performance of classifiers were measured using BoW, n-gram, and chi-squared methods. BPNN model was compared with Naïve Bayes and support vector machine based on accuracy, precision, recall, and f1-score. The results show that the proposed email spam system achieved 98.6% accuracy with cross-validation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ajanthaa Lakkshmanan ◽  
C. Anbu Ananth ◽  
S. Tiroumalmouroughane S. Tiroumalmouroughane

PurposeThe advancements of deep learning (DL) models demonstrate significant performance on accurate pancreatic tumor segmentation and classification.Design/methodology/approachThe presented model involves different stages of operations, namely preprocessing, image segmentation, feature extraction and image classification. Primarily, bilateral filtering (BF) technique is applied for image preprocessing to eradicate the noise present in the CT pancreatic image. Besides, noninteractive GrabCut (NIGC) algorithm is applied for the image segmentation process. Subsequently, residual network 152 (ResNet152) model is utilized as a feature extractor to originate a valuable set of feature vectors. At last, the red deer optimization algorithm (RDA) tuned backpropagation neural network (BPNN), called RDA-BPNN model, is employed as a classification model to determine the existence of pancreatic tumor.FindingsThe experimental results are validated in terms of different performance measures and a detailed comparative results analysis ensured the betterment of the RDA-BPNN model with the sensitivity of 98.54%, specificity of 98.46%, accuracy of 98.51% and F-score of 98.23%.Originality/valueThe study also identifies several novel automated deep learning based approaches used by researchers to assess the performance of the RDA-BPNN model on benchmark dataset and analyze the results in terms of several measures.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yaowu Zhu ◽  
Junnong Xu ◽  
Sihong Zhang

The assessment of teaching quality is a very complex and fuzzy nonlinear process, which involves many factors and variables, so the establishment of the mathematical model is complicated, and the traditional evaluation method of teaching quality is no longer fully competent. In order to evaluate teaching quality effectively and accurately, an optimized GA-BPNN algorithm based on genetic algorithm (GA) and backpropagation neural network (BPNN) is proposed. Firstly, an index system of teaching quality evaluation is established, and a questionnaire is designed according to the index system to collect data. Then, an English teaching quality evaluation system is established by optimizing model parameters. The simulation shows that the average evaluation accuracy of the GA-BPNN algorithm is 98.56%, which is 13.23% and 5.85% higher than those of the BPNN model and the optimized BPNN model, respectively. The comparison results show that the GA-BPNN algorithm in teaching quality evaluation can make reasonable and scientific results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dehui Zhou

Since the birth of the financial market, the industry and academia want to find a method to accurately predict the future trend of the financial market. The ultimate goal of this paper is to build a mathematical model that can effectively predict the short-term trend of the financial time series. This paper presents a new combined forecasting model: its name is Financial Time Series-Empirical Mode Decomposition-Principal Component Analysis-Artificial Neural Network (FEPA) model. This model is mainly composed of three components, which are based on financial time series special empirical mode decomposition (FTA-EMD), principal component analysis (PCA), and artificial neural network. This model is mainly used to model and predict the complex financial time series. At the same time, the model also predicts the stock market index and exchange rate and studies the hot fields of the financial market. The results show that the empirical mode decomposition back propagation neural network (EMD-BPNN) model has better prediction effect than the autoregressive comprehensive moving average model (ARIMA), which is mainly reflected in the accuracy of prediction. This shows that the prediction method of decomposing and recombining nonlinear and nonstationary financial time series can effectively improve the prediction accuracy. When predicting the closing price of Australian stock index, the hit rate (DS) of the FEPA model decomposition method is 72.22%, 10.86% higher than the EMD-BPNN model and 3.23% higher than the EMD-LPP-BPNN model. When the FEPA model predicts the Australian stock index, the hit rate is improved to a certain extent, and the effect is better than other models.


Author(s):  
Bo Huang

This study analyzed three prediction models: ID model, GM (1,1) model and back-propagation neural network (BPNN) model. Firstly, the principles of the three models were introduced, and the prediction methods of the three models were analyzed. Then, taking enterprise A as an example, the demand for human resources was predicted, and the prediction results of the three models were compared. The results showed that the maximum and minimum errors were 240 people and 12 people respectively in the prediction results of the ID3 model and 64 people and 37 people respectively in the prediction results of the GM (1, 1) model; the errors of the BPNN model were smaller than ten people, and the minimum value of the BPNN model was three people, which was in good agreement with the actual value. The prediction of the human resource demand of enterprise A in the future five years with the BPNN model suggested that the demand for employees would growing rapidly. The results show that the BPNN model has better reliability and can be popularized and applied in practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Di Mu ◽  
Shuning Wang

It is important to accurately estimate the SOC to ensure that the lithium-ion battery is within a safe working range, prevent over-charging and over-discharging, and ultimately improve battery life. However, SOC is an internal state of the battery and cannot be directly measured. This paper proposes a SOC estimation method based on the wide and deep neural network model, which combines the linear regression (LR) model and the backpropagation neural network (BPNN) model. This article uses the dataset provided by the Advanced Energy Storage and Applications (AESA) group to verify the performance of the model. The performance of the proposed model is compared with the common BPNN model in terms of root mean square error (RMSE), average absolute proportional error (MAPE), and SOC estimation error. The validation results prove that the effect of the proposed model in estimating SOC is better than that of the ordinary BPNN model. Compared with the BPNN model, the RMSE values of the SOC predicted value of the wide and deep model in the charging and discharging stages were reduced by 10.2% and 15.4%, respectively. Experimental results show that the maximum SOC estimation error of the model in predicting the SOC during charging and discharging is 0.42% and 0.86%, respectively.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Jianlin Li ◽  
Luyang Wang ◽  
Xinyi Wang ◽  
Peiqiang Gao

AbstractArtificial neural network (ANN) provides a new way for mine water inflow prediction. However, the effectiveness of prediction using ANN model would not be guaranteed if the influencing factors of water inflow are difficult to quantify or there are only a few observation data. Chaos theory can recover the rich dynamic information hidden in time series. By reconstructing water inflow time series in phase space, the multi-dimensional matrix could be obtained, with each column representing an influencing factor of water inflow and its value representing the change of the influencing factor with time. Therefore, a new prediction model of mine water inflow can be established by combining ANN with chaos theory when lacking data on the influencing factors of water inflow. In the present study, the No. 12 coal mine of Pingdingshan China was selected as the study site. The Chaos-GRNN model and Chaos- BPNN model of mine, water inflow were established by using the water inflow data from February 1976 to December 2013. The model was verified by using the water inflow values in the 24 months from 2014 to 2015. The number embedded dimension (M) of influencing factors of water inflow determined by phase space reconstruction was 7, meaning that there were 7 influencing factors of water inflow and 7 neurons in GRNN input layer, and the time delay was 13 months. The value of GRNN input layer neurons was determined accordingly. The maximum Lyapunov index was 0.0530, and the prediction time of GRNN was 19 months. The two models were evaluated by using four evaluation indices (R, RMSE, MAPE, NSE) and violin plot. It was found that both models can realize the long-term prediction of water inflow, and the prediction effectiveness of Chaos-GRNN model is better than that of Chaos-BPNN model.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2808
Author(s):  
Li Li ◽  
Jiahui Yu ◽  
Hang Cheng ◽  
Miaojuan Peng

In the context of the long-term coexistence between COVID-19 and human society, the implementation of personnel health monitoring in construction sites has become one of the urgent needs of current construction management. The installation of infrared temperature sensors on the helmets required to be worn by construction personnel to track and monitor their body temperature has become a relatively inexpensive and reliable means of epidemic prevention and control, but the accuracy of measuring body temperature has always been a problem. This study developed a smart helmet equipped with an infrared temperature sensor and conducted a simulated construction experiment to collect data of temperature and its influencing factors in indoor and outdoor construction operation environments. Then, a Partial Least Square–Back Propagation Neural Network (PLS-BPNN) temperature error compensation model was established to correct the temperature measurement results of the smart helmet. The temperature compensation effects of different models were also compared, including PLS-BPNN with Least Square Regression (LSR), Partial Least Square Regression (PLSR), and single Back Propagation Neural Network (BPNN) models. The results showed that the PLS-BPNN model had higher accuracy and reliability, and the determination coefficient of the model was 0.99377. After using PLS-BPNN model for compensation, the relative average error of infrared body temperature was reduced by 2.745 °C and RMSE was reduced by 0.9849. The relative error range of infrared body temperature detection was only 0.005~0.143 °C.


Sign in / Sign up

Export Citation Format

Share Document