scholarly journals Experimental and finite element analysis of mechanical behavior of concrete damaged by Alkali Aggregate Reaction (AAR) and repaired with CFRP Layers

2021 ◽  
Vol 1067 (1) ◽  
pp. 012054
Author(s):  
Roaa A Kadhim ◽  
Rania S Al-Taie ◽  
Prof Riadh Al-Mahaidi
2020 ◽  
Vol 14 (5-6) ◽  
pp. 555-567
Author(s):  
Michael Weigelt ◽  
Cornelius Thoma ◽  
Erdong Zheng ◽  
Joerg Franke

AbstractNumerous applications of daily life use flat coils, e.g. in the automotive area, in solar technology and in modern kitchens. One common property that all these applications share, is a flat coil made of high-frequency (HF) litz wires. The coil layout and the properties of the HF litz wire influence the winding process and the efficiency of the application. As a result, the HF litz wire must meet the complex technical requirements of the winding process and of the preferred mechanical, electromagnetic and thermal properties of the HF litz wire itself. Therefore, a reasonable configuration and optimization of HF litz wire has been developed with the help of a finite-element-analysis (FEA). In this work, it is first shown that the mechanical behavior of HF litz wire under tensile and bending stress can be simulated. Since the computational effort for modelling an HF litz wire at the single conductor level is hardly manageable, a suitable modelling strategy is developed and applied using geometric analogous models (GAM). By using such a model, HF litz wires can be designed for the specific application and their behavior in a winding process can be predicted.


Sign in / Sign up

Export Citation Format

Share Document