scholarly journals Predicting Drilling Rate of Penetration Using Artificial Neural Networks

2021 ◽  
Vol 1067 (1) ◽  
pp. 012150
Author(s):  
Doaa Saleh Mahdi
2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ahmed K. Abbas ◽  
Salih Rushdi ◽  
Mortadha Alsaba ◽  
Mohammed F. Al Dushaishi

Predicting the rate of penetration (ROP) is a significant factor in drilling optimization and minimizing expensive drilling costs. However, due to the geological uncertainty and many uncontrolled operational parameters influencing the ROP, its prediction is still a complex problem for the oil and gas industries. In the present study, a reliable computational approach for the prediction of ROP is proposed. First, fscaret package in a R environment was implemented to find out the importance and ranking of the inputs’ parameters. According to the feature ranking process, out of the 25 variables studied, 19 variables had the highest impact on ROP based on their ranges within this dataset. Second, a new model that is able to predict the ROP using real field data, which is based on artificial neural networks (ANNs), was developed. In order to gain a deeper understanding of the relationships between input parameters and ROP, this model was used to check the effect of the weight on bit (WOB), rotation per minute (rpm), and flow rate (FR). Finally, the simulation results of three deviated wells showed an acceptable representation of the physical process, with reasonable predicted ROP values. The main contribution of this research as compared to previous studies is that it investigates the influence of well trajectory (azimuth and inclination) and mechanical earth modeling parameters on the ROP for high-angled wells. The major advantage of the present study is optimizing the drilling parameters, predicting the proper penetration rate, estimating the drilling time of the deviated wells, and eventually reducing the drilling cost for future wells.


2017 ◽  
Vol 50 (3) ◽  
pp. 252-255
Author(s):  
Hadi Fathipour Azar ◽  
Timo Saksala ◽  
Seyed-Mohammad Esmaiel Jalali

Prediction of the rate of penetration (ROP) is an important task in drilling economical assessments of mining and construction projects. In this paper, the predictability of the ROP for percussive drills was investigated using the artificial neural networks (ANNs) and the linear multivariate regression analysis. The “power pack” frequency, the revolution per minute (RPM), the feed pressure, the hammer frequency, and the impact energy were considered as input parameters. The results indicate that the ANN with the regression model predicts the ROP under different conditions with high accuracy. It also demonstrates that the ANN approach is a beneficial tool that can reduce cost, time and enhance structure reliability.


Sign in / Sign up

Export Citation Format

Share Document