feed pressure
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 42)

H-INDEX

12
(FIVE YEARS 2)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 413
Author(s):  
Bruna F. Soares ◽  
Daniil R. Nosov ◽  
José M. Pires ◽  
Andrey A. Tyutyunov ◽  
Elena I. Lozinskaya ◽  
...  

This work aims to explore the gas permeation performance of two newly-designed ionic liquids, [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2], in supported ionic liquid membranes (SILM) configuration, as another effort to provide an overall insight on the gas permeation performance of functionalized-ionic liquids with the [C2mim]+ cation. [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] single gas separation performance towards CO2, N2, and CH4 at T = 293 K and T = 308 K were measured using the time-lag method. Assessing the CO2 permeation results, [C2mim][CF3BF3] showed an undermined value of 710 Barrer at 293.15 K and 1 bar of feed pressure when compared to [C2mim][BF4], whereas for the [C2mim][CF3SO2C(CN)2] IL an unexpected CO2 permeability of 1095 Barrer was attained at the same experimental conditions, overcoming the results for the remaining ILs used for comparison. The prepared membranes exhibited diverse permselectivities, varying from 16.9 to 22.2 for CO2/CH4 and 37.0 to 44.4 for CO2/N2 gas pairs. The thermophysical properties of the [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] ILs were also determined in the range of T = 293.15 K up to T = 353.15 K at atmospheric pressure and compared with those for other ILs with the same cation and anion’s with similar chemical moieties.


Author(s):  
Yogendra Singh Solanki ◽  
Madhu Agarwal ◽  
A. B. Gupta

Abstract In the present study coagulation process was used as pretreatment for the RO membrane with turbid raw water collected from Bisalpur Dam, Rajasthan, India. To optimize coagulation performance, three kinds of coagulants, namely, Alum (commercially available), synthesized inorganic polymeric coagulant-medium basicity (IPC-M), and inorganic polymeric coagulant-ultra high basicity (IPC-UH) were examined for turbidity removal with varying operating parameters. It was observed that in the optimum pH range of 6–7, the IPC-UH resulted as the best performing coagulant with 0.99 mg/L equivalent Al2O3 dose revealing 2 NTU residual turbidity and residual aluminium of 0.001 mg/L. Moreover, Langelier saturation index and Ryznar stability index values were evaluated at optimum conditions of all the three coagulants proclaiming negligible scaling potential. Furthermore, the coagulant-treated water (100 L) was fed to the RO membrane, and the performance was noted in terms of flux, pressure, and TDS. It was observed that IPC-UH has the lowest reduction in permeate flux of 0.78 L/min/m2 compared to commercially available coagulant alum (0.90 L/min/m2). Also, the increased feed pressure was observed for all the coagulants treated water with the lowest value of 2.3 kg/cm2 for IPC-UH, which was 2.5 kg/cm2 for Alum (commercially available coagulant). Henceforth, integration of coagulation before the RO system resulted in effective pretreatment of turbid water with very minute scaling.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1522
Author(s):  
Daesung Song ◽  
Sung Yong Cho ◽  
Thang Toan Vu ◽  
Yen Hoang Phi Duong ◽  
Eunkyu Kim

The one-dimensional (1D) mathematical model of fixed bed reactor was developed for dimethyl ether (DME) synthesis at pilot-scale (capacity: 25–28 Nm3/h of syngas). The reaction rate, heat, and mass transfer equations were correlated with the effectiveness factor. The simulation results, including the temperature profile, CO conversion, DME selectivity, and DME yield of the outlet, were validated with experimental data. The average error ratios were below 9.3%, 8.1%, 7.8%, and 3.5% for the temperature of the reactor, CO conversion, DME selectivity, and DME yield, respectively. The sensitivity analysis of flow rate, feed pressure, H2:CO ratio, and CO2 mole fraction was investigated to demonstrate the applicability of this model.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 948
Author(s):  
Irfan Purnawan ◽  
Derryadi Angputra ◽  
Septiana Crista Debora ◽  
Eva Fathul Karamah ◽  
Arifina Febriasari ◽  
...  

Wastewater from the tofu industry contains many pollutants that are very harmful to the environment, significantly endangering aquatic life and producing a pungent odor. This study aims to prepare a polyvinylidene fluoride (PVDF) membrane with the additive polyvinylpyrrolidone (PVP), and utilize it to treat tofu wastewater in the ultrafiltration (UF) process. Flat sheet membranes were prepared using PVDF that was dissolved in N,N-dimethylacetamide (DMAc) and then combined with the additive material of PVP at the varying compositions of 14.9/0.1, 14.85/0.15, and 14.8/0.2 g of PVDF/gram of PVP. The addition of PVP was proposed to improve the properties of the membranes. Characterization by scanning electron microscope (SEM), water contact angle, and Fourier transform infrared spectroscopy (FTIR) were performed on the PVDF/PVP membrane flat sheet in order to understand and compare changes in the physical and chemical properties that occurred in the membrane. Prior to the UF process, the tofu wastewater was treated by a coagulation–flocculation process through a jar tester using poly aluminum chloride (PAC) as a coagulant. Based on the membrane characterization, the addition of PVP improved the physical and chemical properties of membranes. The pore size of the membrane becomes larger, which could increase permeability as well as the flux value. The TSS and turbidity of the water produced in the UF process decreased with an increase in feed pressure due to a greater driving force generated to facilitate the penetration of the suspended solids. The UF results showed that the effect of PVP on water flux was greatest for the 14.85/0.15 PVDF/PVP membrane for both pure and wastewater. In addition, the highest percentage of rejection for TSS and turbidity were observed in the 14.9/0.1 PVDF/PVP membrane and rejection for TDS was indicated in the 14.8/0.2 PVDF/PVP membrane. Meanwhile, the resulting pH decreased slightly across all samples as feed pressure increased.


2021 ◽  
Vol 942 (1) ◽  
pp. 012010
Author(s):  
Bartłomiej Ziętek ◽  
Jacek Wodecki ◽  
Anna Michalak ◽  
Pawel Śliwiński

Abstract This paper represents an analysis of the wheeled drilling rig’s drilling process. Thanks to data from the onboard measurement unit of the machine, the characteristics of the drilling process regarding state of the drill bit are identified and calculated. The aim of the work is to provide a comparison between different drill qualities and process classification using Threshold-based segmentation with feed pressure levels and duration of single hole drilling. Second methodology is hierarchical clustering to create cluster analysis. Thanks to these approaches, it is possible to detect the time when the drill bit should be changed. The obtained results state that the average drill time for a new drill bit is shorter approximately by 50% than for the worn-out bit in terms of average drilling duration. Moreover, these changes are visible in the subsystem pressure level of the machine under specific drilling regimes.


2021 ◽  
Vol 942 (1) ◽  
pp. 012013
Author(s):  
Mateusz Góralczyk ◽  
Anna Michalak ◽  
Paweł Śliwiński

Abstract Blastholes drilling performance is crucial for ensuring good performance of the whole excavation process, the correctness of which demands ‘healthy’ drill bit and appropriate behavior of an operator. Given the large volume of non-linear parameters describing the process, it appears reasonable to employ supervised learning methods to obtain drilling performance insights. Random Forest Regressor model has been trained on the dataset corresponding to correct performance of blastholes drilling and its hyperparameters have been tuned to obtain the highest possible accuracy. It has been later tested on three datasets corresponding to a good performance of drilling, and two cases of its non-optimal execution. Estimation errors are proposed to be used as bit technical state condition indicators (or more generally - process performance indicators). Root Mean Squared Error has been proven to differ significantly when compared estimation based on datasets corresponding to execution of drilling with ‘healthy’ drill bit, and its execution with worn-off one, however, it has been not sufficient to distinguish non-optimal drilling when additional feed pressure has been exerted by an operator to compensate the reduced pace of drilling. It has been, however, possible when the mean of absolute estimation errors has been used.


Author(s):  
Saffa Syamimi Norizam ◽  
Mohd Azlan Hussain ◽  
Mohd Usman Mohd Junaidi

Abstract Water purification from brackish water sources has been acknowledged as one of the most promising ways in producing drinkable water in water-scarce areas. In this study, an ultra-low pressure reverse osmosis (ULPRO) membrane was numerically and experimentally investigated to produce drinking water by the removal of sodium chloride salt which provides further validation of the model from a practical perspective. An enhanced predictive model based on Donnan-Steric Pore Model with dielectric exclusion (DSPM-DE) incorporating the osmotic effects was formulated in process simulation. The feed pressure and concentration were optimized as input variables and interaction between them was observed, while salt rejection and water recovery rate were taken as response attributes. The results obtained on the ULPRO membrane showed that the performance depends on the charge, steric, and dielectric effects. Furthermore, the enhanced model was validated with the experimental data attained from a lab-scale filtration system with good accuracy in the salt rejection and water recovery results. Comparing the enhanced DSPM-DE with the existing solution diffusion model reveals that the enhanced model predicts the membrane performance better and thereby qualifies itself as a reliable model for desalination of brackish water using ULPRO membrane.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 673
Author(s):  
Wanyu Li ◽  
Qiyuan Li ◽  
Liwei Guo ◽  
Juyan Liu ◽  
Kai Wang ◽  
...  

This work focuses on the energy analysis of the membrane concentration systems that process traditional Chinese medicine extracts with dynamic properties incorporated, particularly for reverse osmosis (RO) and membrane distillation (MD) processes. The evaluation of process energy consumption was achieved by integrating the empirical properties correlations of Brix and other characteristics properties of the feed (e.g., density and heat capacity). The dynamic SEC analysis for RO process was largely dependent on the feed pressure, reported at 50 kWh/m3 at feed pressure of 0.9 MPa with less than 50% water removal. The occurrence of foaming at above 50% water removal caused discrepancies between the simulated flux results and the experimentally acquired results in RO, whereas the estimated dynamic SEC for MD process did not show a strong correlation with the temperatures selected in this study, ranging from 900 to 1000 kWh/m3. This approach can be adapted into the design and zoptimization for the concentration process of other herbal extracts by membrane technologies, allowing comprehensive understanding into the energy analysis in future study.


2021 ◽  
Vol 4 (7(112)) ◽  
pp. 33-40
Author(s):  
Vladimir Nazin

At present, there are theoretical and experimental studies of such bearings without taking into account the elastic deformation of the bearing segments. The rotor bearings of powerful turbines at nuclear power plants are subjected to loads as high as tens of tons. One of the important issues in designing segmental bearings operating under these conditions consists in taking into account elastic deformations of the segments. A schematic diagram of a segmental hydrostatic bearing was presented and the principle of its operation was described. When determining the deformation of spherical support, a formula of change in volume of a solid steel ball subjected to uniform pressure was applied. To determine the segment deformation in the axial direction, differential equation of bending of the strip beam as the initial one. The basic equation of deformation of rods with a curved axis acting in the plane of curvature was taken as a starting point of determining the segment deformation in the circumferential direction. It was found in the studies that the maximum deformation of the segment is 4.5 % of radial clearance at a feed pressure of 5 MPa and can affect the bearing characteristics. A substantially nonlinear character of deformations along the segment axis was revealed. It was found that the pressure of the working fluid significantly affects the segment thickness. With an increase in feeding pressure from 1 MPa to 10 MPa, the thickness of the steel segment increased more than 2 times and the thickness of the bronze segment increased more than 3 times. It was established that the pressure of the working fluid exceeding 10 MPa substantially affects the deformation of the spherical support and the bearing clearance. The study results will make it possible to determine more accurately the main characteristics of the segmental bearing and design it more efficiently.


Sign in / Sign up

Export Citation Format

Share Document