scholarly journals Finite element analysis of two-way hollow core reinforced concrete slab under punching repeated load

2021 ◽  
Vol 1145 (1) ◽  
pp. 012051
Author(s):  
Waleed A Tameemi ◽  
Nameer A Alwash

Author(s):  
Ane de Boer ◽  
Max A. N. Hendriks ◽  
Eva O. L. Lantsoght

<p>The Dutch Ministry of Infrastructure and the Environment is concerned with the safety of existing infrastructure and expected re-analysis of a large number of bridges and viaducts. Nonlinear finite element analysis can provide a tool to assess safety; a more realistic estimation of the existing safety can be obtained.</p><p>Dutch Guidelines, based on scientific research, general consensus among peers, and a long-term experience with nonlinear analysis, allow for a reduction of model and user factors and improve the robustness of nonlinear finite element analyses.</p><p>The 2017 version of the guidelines can be used for the finite element analysis of basic concrete structural elements like beams, girders and slabs, reinforced or prestressed. Existing structures, like box-girder structures, culverts and bridge decks with prestressed girders in composite structures can be analysed.</p><p>The guidelines have been developed with a two-fold purpose. First, to advice analysts on nonlinear finite element analysis of reinforced and pre-stressed concrete structures. Second, to explain the choices made and to educate analysts, related to the responsibility of limiting model uncertainty.</p><p>This paper contains an overview of the latest version of the guideline and its latest validation extensions. Most important impact is the extended operational lifetime of an existing reinforced concrete slab structure.</p>



1993 ◽  
Vol 20 (4) ◽  
pp. 587-601 ◽  
Author(s):  
Pierre Léger ◽  
Patrick Paultre

Microcomputer finite element analysis of reinforced concrete slab systems can now be routinely performed to produce realistic numerical simulation of three-dimensional structural behaviour. However, an efficient use of this approach requires an automated integration of design and analysis procedures. Guidelines for proper finite element modelling of slab systems are first presented along with simple post-processing algorithms to perform automatically the design or verifications from the analytical results. Numerical applications on simple slab systems subjected to uniform and concentrated loads are then used to illustrate the relative performance between finite element analyses and the equivalent frame method. Key words: microcomputer, reinforced concrete slab, finite element method, structural design.



2016 ◽  
Vol 38 (2) ◽  
pp. 61-70
Author(s):  
Michał Wymysłowski ◽  
Zygmunt Kurałowicz

Abstract Steel sheet piles are often used to support excavations for bridge foundations. When they are left in place in the permanent works, they have the potential to increase foundation bearing capacity and reduce displacements; but their presence is not usually taken into account in foundation design. In this article, the results of finite element analysis of a typical abutment foundation, with and without cover of sheet piles, are presented to demonstrate these effects. The structure described is located over the Więceminka river in the town of Kołobrzeg, Poland. It is a single-span road bridge with reinforced concrete slab.



2021 ◽  
Vol 261 ◽  
pp. 02042
Author(s):  
Mingqiu Xu ◽  
Jianhua Shao ◽  
Baijian Tang ◽  
Hongming Li

Order to investigate the failure effect of textile reinforced concrete (TRC) plate under bending load, the corresponding finite element model is established. By comparing the numerical simulation results with the experimental results, the rationality and feasibility of the finite element model are verified, and then the crack extension of TRC and the ultimate strain of carbon textile are analyzed. The failure mode of the slab under bending load is obtained, and it is found that the carbon textile concrete slab has better reinforcement effect, which greatly improves the safety performance of concrete members.



2021 ◽  
Vol 7 (3) ◽  
pp. 477-487
Author(s):  
Guergah Cherif ◽  
Dimia Mohamed Salah ◽  
Benmarce Abdelaziz

This paper presents a study of the behaviour of Reinforced Concrete (RC) slabs subjected to severe hydrocarbon fire exposure. In which the spalling phenomena of concrete is to be considered. The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain petro-chemical facilities, tunnels, parking structures, etc. Spalling is included using a simplified approach where elements with temperatures higher than 400 °C are assumed to occur and the corresponding thermo-mechanical response of RC slabs is evaluated. The nonlinear finite element software SAFIR has been used to perform a numerical analysis of the spalling risk, by removing layers of concrete covering when a set of spalling criteria is checked. The numerical results obtained by finite element analysis of the temperature distribution within the slab and mid-span deflection were compared with published experimental data. Predictions from the numerical model show a good agreement with the experimental data throughout the entire fire exposure to the hydrocarbon fire. This shows that this approach (layering procedure) is very useful in predicting the behaviour of concrete spalling cases. Doi: 10.28991/cej-2021-03091667 Full Text: PDF



Sign in / Sign up

Export Citation Format

Share Document