scholarly journals Derivation of crack propagation velocity formula for investigation dynamic problems

2021 ◽  
Vol 1155 (1) ◽  
pp. 012037
Author(s):  
I A Magomedov ◽  
Z A Dzhabrailov ◽  
M V Abubakarov
2011 ◽  
Vol 250-253 ◽  
pp. 1856-1861
Author(s):  
Li Jun Lu ◽  
Jian Ping Liu ◽  
Zhong Mei Li

This paper focusing on the crack at hole of guyed-mast’s ear-plate connecting cables and shaft of guyed-mast, adopting two degree of freedom crack propagation model, track the crack propagation according to the increment of the deepest point and the surface point on the crack front of crack at hole of guyed-mast’s ear-plate. The stress intensity factors of I,II and III type crack with given shape and size have been calculated via finite element method, and a numerical method of calculating stress intensity factors with any shape and size crack has been proposed; furthermore according to modified I, II and III type compound crack propagation velocity formula on the basis of Paris crack propagation velocity formula, we analyzed the changing of crack shape parameter a/c with crack size parameter a/T of crack at hole of ear-plate connecting cable and shaft of guyed-mast by numerical integration method and obtained the propagation characteristic.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chengxiao Li ◽  
Yuantong Zhang ◽  
Peng Xu ◽  
Chen An

Crack defects make it difficult to predict the dynamic fracture of tunnel specimens under an impact load. To study the impact of the velocity and crack location on a roadway under dynamic load, specimens with tunnel-type voids were made using polymethyl methacrylate. The split-Hopkinson bar was used as the loading method, and a digital laser dynamic caustics system was used to observe the fracture process of the specimens. The dynamic fracture process was evaluated by the crack propagation velocity, displacement, and dynamic stress intensity factor. To predict and verify the test results, ABAQUS was used to simulate the test process. It was found that the results of the simulated combinations of the crack propagation path and initial fracture toughness change law are consistent with the test results. The initial fracture toughness and the peak value of the crack propagation velocity increased with the increase of the impact velocity. The crack propagation law and trajectory were affected by the location of the prefabricated cracks.


Sign in / Sign up

Export Citation Format

Share Document