unstable crack
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 4)

Author(s):  
Deborah Weiß ◽  
Britta Schramm ◽  
Gunter Kullmer

AbstractIn addition to the classical strength calculation, it is important to design components with regard to fracture mechanics because defects and cracks in a component can drastically influence its strength or fatigue behavior. Cracks can propagate due to operational loads and consequently lead to component failure. The fracture mechanical analysis provides information on stable or unstable crack growth as well as about the direction and the growth rate of a crack. For this purpose, sufficient information has to be available about the crack location, the crack length, the component geometry, the component loading and the fracture mechanical material parameters. The fracture mechanical properties are determined experimentally with standardized specimens as defined by the guidelines of the American Society for Testing and Materials. In practice, however, especially in the context with damage cases or formed material fracture mechanical parameters directly for a component are of interest. However, standard specimens often cannot be extracted at all due to the complexity of the component geometry. Therefore, the development of special specimens is required whereby certain arrangements have to be made in advance. These arrangements are presented in the present paper in order to contribute to a holistic investigation chain for the experimental determination of fracture mechanical material parameters with special specimens.


2021 ◽  
Author(s):  
Michelle Kent ◽  
Kip Findley

Abstract Hydrogen embrittlement (HE) susceptibility was investigated for Alloy 718 and Alloy 945X specimens heat treated to a set of conditions within the specifications of API Standard 6ACRA. Heat treatments were selected to simulate the potential variation in thermal history in thick sections of bar or forged products and produce various amounts of discontinuous grain boundary δ phase in Alloy 718 and M23C6 carbides in Alloy 945X, while maintaining a constant hardness in the range of 35-45 HRC for Alloy 718 and 34-42 HRC for Alloy 945X. Time-temperature-transformation (TTT) diagrams and experimentation were used to select a set of heat treatments containing no δ phase, a small quantity of δ, and a larger quantity of δ in Alloy 718. The presence of δ phase has not been verified for the moderate condition. A similar approach was taken regarding M23C6 carbides in Alloy 945X. Incremental step loading (ISL) tests were conducted under in-situ cathodic charging on circular notch tensile (CNT) specimens in a 0.5 M H2SO4 solution. During the test, the direct current potential drop (DCPD) was measured across the notch to determine the stress intensity associated with unstable crack growth. Results indicate that even very small quantities of δ phase in Alloy 718 are detrimental to HE resistance. Both Alloy 718 and Alloy 945X show decreases in HE resistance with aging, with a greater degradation in Alloy 718.


Author(s):  
Qiangling Yao ◽  
Chuanjin Tang ◽  
Ze Xia ◽  
Qiang Xu ◽  
Weinan Wang ◽  
...  

AbstractWe investigated the effects of acidic and circumneutral water on coal samples by uniaxial compression, acoustic emission, and a series of physical tests. In acidic water, the coal samples were damaged, and their ultrasonic velocities decreased, as minerals such as kaolinite and calcite underwent dissolution. When the pH was < 7, the uniaxial compressive strength and elastic modulus decreased, while the duration of the residual strength stage tended to increase. The reactions were stronger at higher H+ concentrations and the number of large pores increased; there was a significant increase in the accumulated acoustic emission counts and maximum average energy near the unstable crack growth stage. The post-peak stage of the coal samples was characterized in the different acidic waters and the failure modes were identified by spectrum analysis. Acidic water damaged the weak areas of coal samples by complex physical and chemical reactions, which made direct tensile failure more likely when the coal samples were loaded.


2021 ◽  
Author(s):  
Tao Li ◽  
Haoyang Sun ◽  
He Han ◽  
Chentao Zhang ◽  
Bin Li ◽  
...  

Abstract In the field of governing our “Plastic Planet”, polylactic acid (PLA) has been considered to be a promising and ecologically friendlier alternative to traditional petroleum-based plastics. However, PLA-based products degrade slowly in the natural environment, likely resulting in a large accumulation of PLA waste worldwide in the near future. Herein, we have incorporated artificially cultured diatom frustules (DFs) into PLA, and found an improvement of more than eightfold on the degradation rate, from more than 24 months to 3 months or even less, as compared with the pure PLA. Mechanistic investigations illustrate that DFs change the degradation behavior of PLA from surface erosion to bulk erosion by the induced microfibril crystals. Simulation analysis verifies that the unstable crack propagation inside the PLA matrix greatly accelerates the degradation. The method developed in this work provides an efficient way to achieve rapid and controllable degradation of biodegradable polymers for the urgent and widespread usage of green plastic productions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rongchao Xu ◽  
Yiding Jin ◽  
Yumin Zhang

Rockburst is a highly destructive geological disaster caused by excavation and unloading of hard and brittle rock mass under high geostress environment. Quantitative evaluation of rock brittleness and rockburst proneness is one of the important tasks in potential rockburst assessment. In this study, uniaxial compression and acoustic emission tests were carried out for basalt, granite, and marble, and their brittleness and rockburst proneness were quantitatively evaluated. The acoustic emission evolution characteristics of the three rocks during uniaxial compression were analyzed, and the differences of fracture mechanism of the three rocks were compared. The results show that (1) based on the brittleness evaluation index, basalt is the most brittle rock, followed by granite, and marble is the weakest; (2) based on the rockburst proneness evaluation index, combined with the macroscopic failure phenomenon and morphology of the samples, the rockburst proneness of basalt is the strongest, followed by granite, and marble is the weakest; (3) there exists a positive correlation between rockburst proneness and brittleness, and the fitting results show that they are approximately exponential; and (4) brittleness has an important influence on the rock fracture mechanism. Unlike marble, basalt and granite with strong brittleness continuously present high-energy acoustic emission signals in the stage of unstable crack propagation, and large-scale fracture events continue to occur; from the calculation results of the acoustic emission b value, the stronger the brittleness of rock, the larger the proportion of large-scale fracture events in the failure process.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1881
Author(s):  
Kean Ong Low ◽  
Mahzan Johar ◽  
Haris Ahmad Israr ◽  
Khong Wui Gan ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness GIIC increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher GIIC. Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2290
Author(s):  
Xoan F. Sánchez-Romate ◽  
Jesús Martin ◽  
María Sánchez ◽  
Alejandro Ureña

The fracture behavior and crack sensing of mode-I joints with carbon nanotube (CNT)-reinforced adhesive films were explored in this paper under hydrothermal aging conditions. The measured fracture energy of CNT-reinforced joints in grit blasting conditions is higher for non-aged samples than for neat adhesive joints (around 20%) due to the nanofiller toughening and crack bridging effects. However, in the case of brushed surface-treated adherents, a drastic decrease is observed with the addition of CNTs (around 70%) due to the enhanced tribological properties of the nanofillers. Hydrothermal aging has a greater effect in the CNT-reinforced samples, showing a more prevalent plasticization effect, which is confirmed by the R-curves of the specimens. The effects of surface treatment on the crack propagation properties was observed by electrical resistance monitoring, where brushed samples showed a more unstable electrical response, explained by more unstable crack propagation and reflected by sharp increases of the electrical resistance. Aged specimens showed a very uniform increase of electrical resistance due to slower crack propagation, as induced by the plasticization effect of water. Therefore, the proposed adhesive shows a high applicability for crack detection and propagation without decreasing the mechanical properties.


Author(s):  
Karun Kalia ◽  
Amir Ameli

Abstract Layered multi-materials of dissimilar polymers and their nanocomposites offer new opportunities as smart materials and structures. A critical aspect of such structures is the quality of interlayer adhesion between dissimilar polymer matrices. This work reports the development of asymmetric double cantilever beam (ADCB) specimens of dissimilar polymers and its use in the analysis and understanding of their interlayer adhesion in 3D-printed rigid/soft interfaces. Acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polylactic acid (PLA) were chosen as the rigid polymers and combined with thermoplastic polyurethane (TPU) as the soft component. 3D-printed ADCB specimens were loaded under opening mode, until fracture, to obtain the load-displacement data and the fracture surfaces were analyzed using optical microscopy. ABS/TPU/ABS and PC/TPU/PC material combinations resulted in a more stable crack growth with a high peak load indicating a relatively good interfacial adhesion. The high nozzle temperatures of ABS and PC and their amorphous nature contributed to a good layer-to-layer fusion during 3D printing. However, PLA/TPU/PLA specimens exhibited an unstable crack growth behavior with a pure adhesive failure mode and a significantly lower peak load. This poor interfacial bond strength was correlated to the relatively low nozzle temperature of PLA and its semi-crystalline structure. The maximum loads in ABS/TPU/ABS and PC/TPU/PC specimens were found to be ∼2.5 times greater than that of PLA/TPU/PLA ones. The method provides a valuable tool in quantifying interlayer adhesion quality in printed dissimilar polymers and their functional nanocomposites.


2020 ◽  
Vol 222 (2) ◽  
pp. 795-814 ◽  
Author(s):  
Jian-Zhi Zhang ◽  
Xiao-Ping Zhou

SUMMARY Uniaxial compression tests with combined acousto-optical monitoring techniques are conducted on flawed granite specimens, with the aim of investigating the fracture-related acoustic emission (AE) event rate characteristics at the unstable cracking phase in flawed rocks. The interevent time (IET) function F(τ) is adopted to interpret the AE time-series from damage stress (σcd) to ultimate failure, and photographic data are used to evaluate unstable cracking behaviours in flawed granite. The results show that a high AE event rate is always registered but intermittently interrupted by macrofracturing at the unstable cracking phase. The reversed U-shaped curve relation between the AE event rate and the loading time is documented in unstable flawed granite for the first time. The acoustic quiescence has a mechanismic linkage and quantitative correlation with stress drop, and this synchronous acousto-mechanical behaviour is a typical result of the initiation, growth and coalescence of macrocracks initiated from the flaw tips. Moreover, the reactivation and intensification of fracture process zones (FPZs) by increasing loads are the dominant mechanism triggering unstable crack growth in flawed granite.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 302 ◽  
Author(s):  
Ali Zolfagharian ◽  
Mohammad Reza Khosravani ◽  
Akif Kaynak

Three-dimensional (3D)-printed parts are an essential subcategory of additive manufacturing with the recent proliferation of research in this area. However, 3D-printed parts fabricated by different techniques differ in terms of microstructure and material properties. Catastrophic failures often occur due to unstable crack propagations and therefore a study of fracture behavior of 3D-printed components is a vital component of engineering design. In this paper, experimental tests and numerical studies of fracture modes are presented. A series of experiments were performed on 3D-printed nylon samples made by fused deposition modeling (FDM) and multi-jet fusion (MJF) to determine the load-carrying capacity of U-notched plates fabricated by two different 3D printing techniques. The equivalent material concept (EMC) was used in conjunction with the J-integral failure criterion to investigate the failure of the notched samples. Numerical simulations indicated that when EMC was combined with the J-integral criterion the experimental results could be predicted successfully for the 3D-printed polymer samples.


Sign in / Sign up

Export Citation Format

Share Document