scholarly journals Development of poly(ethylene glycol) diacrylate membrane for facilitated CO2/N2 separation

2021 ◽  
Vol 1195 (1) ◽  
pp. 012019
Author(s):  
T P Kim ◽  
Z A Jawad ◽  
B L F Chin

Abstract Carbon dioxide (CO2) is responsible for approximately 80% of greenhouse gases emission that is the main source to global climate change causing notable environmental impacts. Poly (ethylene glycol) diacrylate (PEGDA) have polar PEG repeating units, which provide a strong affinity towards carbon dioxide (CO2) molecules has been blended with 3-aminopropyltrimethoxysilane (APTMS) to synthesize membrane for CO2/nitrogen (N2) separation. The new synthesized membrane is studied for potential applications in gas separation and to be implemented in control CO2 emission. APTMS is also used to delay the diffusion between polymer and solvent. In this study, concentration of polymer of PEGDA and casting solvent of APTMS in terms of mol ratio from a range of 0.9:1.1 to 1.3:0.7 is discussed. Based on the results, PEGDA membrane shows best gas separation performance at mol ratio of PEGDA to APTMS of 1:1 where the permeance for both CO2/N2, and CO2/N2 selectivity are 75.21±0.15 GPU, 22.95±0.05 GPU and 3.28±0.12, respectively. An optimal aminosilane/polymer reaction ratio benefits the gas separation performance of the membrane due to the affinity of the membrane towards CO2 and formation of different membrane surface morphology.

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 998
Author(s):  
Ana R. Nabais ◽  
Rute O. Francisco ◽  
Vítor D. Alves ◽  
Luísa A. Neves ◽  
Liliana C. Tomé

Despite the fact that iongels are very attractive materials for gas separation membranes, they often show mechanical stability issues mainly due to the high ionic liquid (IL) content (≥60 wt%) needed to achieve high gas separation performances. This work investigates a strategy to improve the mechanical properties of iongel membranes, which consists in the incorporation of montmorillonite (MMT) nanoclay, from 0.2 to 7.5 wt%, into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) network containing 60 wt% of the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][TFSI]). The iongels were prepared by a simple one-pot method using ultraviolet (UV) initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) and characterized by several techniques to assess their physico-chemical properties. The thermal stability of the iongels was influenced by the addition of higher MMT contents (>5 wt%). It was possible to improve both puncture strength and elongation at break with MMT contents up to 1 wt%. Furthermore, the highest ideal gas selectivities were achieved for iongels containing 0.5 wt% MMT, while the highest CO2 permeability was observed at 7.5 wt% MMT content, due to an increase in diffusivity. Remarkably, this strategy allowed for the preparation and gas permeation of self-standing iongel containing 80 wt% IL, which had not been possible up until now.


RSC Advances ◽  
2015 ◽  
Vol 5 (130) ◽  
pp. 107949-107956 ◽  
Author(s):  
Xuemin Yu ◽  
Zhu Xiong ◽  
Jinglong Li ◽  
Ziyang Wu ◽  
Yunze Wang ◽  
...  

A feasible and efficient strategy was developed to enable persistent PEGylation on a PLA membrane surface via micro-swelling and subsequent UV-initiated crosslinking of poly(ethylene glycol) diacrylate.


ACS Omega ◽  
2021 ◽  
Author(s):  
Saeid Biria ◽  
Shreyas Pathreeker ◽  
Francielli S. Genier ◽  
Fu-Hao Chen ◽  
Hansheng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document