scholarly journals A Micro grid design for a kind of household energy efficiency management system based on high permeability

Author(s):  
Siwei Li ◽  
Jun Li ◽  
Zhuochu Liu ◽  
Min Wang ◽  
Liang Yue
2019 ◽  
Vol 136 ◽  
pp. 01027
Author(s):  
Xiaodong Cao ◽  
Shihai Yang ◽  
Feng Ji ◽  
Songyang Liu ◽  
Xu Zhou

The high permeability of household distributed photovoltaic is prevalent after its access. The connection between distributed generation and main network is cut off quickly and the energy storage device is used to realize energy storage. From the point of view of economy and rationality, the above-mentioned operation has become increasingly unable to meet the health of the grid after the access of distributed generation. In this paper, a construction scheme and operation strategy of household micro-grid including household energy efficiency management is designed by using equipment and equipment integration, equipment and system integration, system and system integration of household micro-grid and household energy efficiency management. It adds in-situ absorption capacity of distributed photovoltaic, realizes efficient integration of household energy efficiency management and household microgrid, effectively solves the problems of high permeability of household distributed generation, and has certain application value in the user side.


1994 ◽  
Vol 15 (2) ◽  
pp. 44-56 ◽  
Author(s):  
VANESSA BRECHLING ◽  
STEPHEN SMITH

2019 ◽  
Vol 16 (3) ◽  
pp. 85
Author(s):  
Marsul Siregar ◽  
Firma Purbantoro ◽  
Tajuddin Nur

Energy Management Concept as part of Green Building Concept is focused to Improve Energy Efficiency Index (EEI) and Water Consumption Index (WCI). The Implementation Energy Management Concept in an office buildings of this study based on the management system model of continual improvement ISO 50001:2011. The purpose of this study was to determine the extent to which the implementation of green building principles in Office Buildings. This study took the case study in an office building in Jakarta Indonesia that has two towers, each tower has 32 floors and 3 basement floors. The method used is descriptive with respect to GREENSHIP Rating Tools for existing building which consists of six categories; Appropriate Site Development (ASD), Energy Efficiency & Conservation (EEC), Water Conservation (WAC), Material Resources & Cycle (MRC), Indoor Air Health & Comfort (IHC) and Building & Environments Management (BEM). The results show that implementation the Energy Management Concept could also made energy performance more efficient, after Implementing through Retrofitting of the Chiller System, Recycle Waste Water, Replacement of Conventional lamp to Energy Saving LED and also Training and Education to all employees and tenants. From comparing data research before implementation of Energy Management Concept in 2014 and after Implementation and retrofitting in 2016, 2017 & 2018, it is found that Energy Efficiency Index (EEI) from 238.8 kwh/m2/Years to 134,04kwh/m2/Year and Water Consumption Index (WCI)From 50 liter/person/Day to 27.18 Liter/person/Day. And the saving cost from electricity bill payments is IDR. 466,803,325.67 / month (18%) and roughly will Break Event Point (BEP) for 3.86 Years


Author(s):  
N.Pooja Et.al

This paper presents an energy management system supported by PI Controller for a residential grid connected micro grid with renewable hybrid generation (wind and photo voltaic) and battery system. Modeling hybrid system includes non conventional energy sources given at sporadic supply conditions and dynamic energy demand, and to make conceptual energy storage with the help of battery system . Designing  an  appropriate  scheme  that dynamically changes modes of renewable integrated system based on the availability of RES power and changes in load. Wind,PV are the primary power supply of the system; battery is going  to  be act  as  a  substitute.The  PI  controller  is developed and carried  out for the aimed hybrid(Wind and PV) energy system to integrate the non conventional energy sources to the serviceability either to grid or to Residential loads.main objective is improvement of transients during switching  periods  by  using an efficient PI controller.maximum power point tracking is also  other objective is energy management system designed for the residential grid connected Micro Grid. Simulations are carried out on the proposed Hybrid energy system using MATLAB/ SIMULINK.


Author(s):  
V. Nakhodov ◽  
O. Borychenko ◽  
A. Cherniavskyi

Statistics show that energy is one of the highest operating costs in a manufacturing enterprise. So, improving energy efficiency can lead to a significant increase in profits and reduce the impact of the enterprise on the environment. To increase the performance of energy efficiency activities, it is necessary to implement an energy management system. One of the components of this system is energy monitoring, which, in turn, is based on the periodic collection and analysis of data to assess the state of the monitoring objects in terms of energy efficiency. In this paper, the role and place of energy monitoring in the energy management system of an industrial enterprise are noted. The paper proposes the concept of creating energy monitoring system in industrial companies, which is based on the combination of a monitoring system based on specific energy consumption, and usage of group energy characteristics of production facilities. Implementing such energy monitoring systems will allow to conduct operational control of energy efficiency of production facilities by creating individual systems for monitoring energy efficiency, as well as successfully carry out such monitoring at the enterprise and its subdivisions over longer periods of time using specific energy consumption indicators. It also provides general guidelines for conducting energy monitoring. These guidelines were formed based on the results of studying various methods and scientific publications in the field of energy monitoring, as well as on the basis of practical experience in the development and implementation of energy management systems. Particular attention is paid to the issues of processing and analysis of information about the objects of energy monitoring of industrial enterprises. The practical application of the concept of creating energy monitoring systems envisages gradual improvement of the existing monitoring system based on the specific energy consumption, which will be further completely replaced with individual energy efficiency monitoring systems.


2020 ◽  
Vol 264 (4) ◽  
pp. 2-9
Author(s):  
Oleksiy Klimenko ◽  

Suggestions for the development of theoretical and methodological foundations of system management of energy efficiency and environmental pollution by road transport in the life cycle are given. It takes into account all essential areas covering transportation, infrastructure, maintenance, also energy, chemical and automotive industries, raw material extraction, utilization, and related processes of energy consumption and environmental pollution, distributed in space and time. A universal structural scheme of the “supersystem” is proposed, which reflects the processes of consumption of energy, material and other resources, distributed environmental pollution through the functioning of road transport and related industries, and linked damage as well. The target function of the “supersystem” can be represented as the fulfilment during a certain period (covering the life cycle of the main elements – objects of influence (regulation) and investment of financial resources) of the specified volumes of certain types of transport work with the minimum possible and economically justified consumption of energy, consumables, materials, other resources (including those consumed by the transportation, infrastructure, maintenance, also energy, chemical and automotive industries, raw material extraction, utilization), the minimum possible losses due to artificial pressure on the recipients (human beings, fauna and flora, buildings, etc.) of directly the transport system and infrastructure, as well as side effects of processes in other elements of the “supersystem”, that may be reduced to the total cost of transport, taking into account the inflation index of monetary units. It is proposed to carry out a mathematical description of complicated sets, dynamically distributed in the space of objects that change the structure and properties over time, based on the further development of such a tool as the theory of multisets. In a simplified form, it is presented an example of a fragment of the management system based on measures to regulate the first access of vehicles to the market, further operation, and to certain elements of infrastructure, with the introduction of low emission zones in cities. The development, creation and effective functioning of the management system of transport and related sectors of the economy in those mentioned above and other parts, requires a coherent system approach based on forecasting (modelling) the consequences of decisions, which can be implemented using the tools described in this article. Keywords: wheeled vehicles, road transport, systems management, energy efficiency, environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document