scholarly journals Analysis and modeling of delamination factor in drilling of woven kenaf fiber reinforced epoxy using Box Behnken experimental design

Author(s):  
M Suhaily ◽  
C H Che Hassan ◽  
A G Jaharah ◽  
M A Afifah ◽  
M K Nor Khairusshima
Author(s):  
Al Emran Ismail ◽  
◽  
Azmahani Sadikin ◽  
Mohd Nasrull Abdol Rahman ◽  
Shahruddin Mahzan ◽  
...  

2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


2015 ◽  
Vol 773-774 ◽  
pp. 48-52
Author(s):  
Al Emran Ismail

This present work investigated the perforated impact strength of woven kenaf fiber reinforced composites subjected to different projectile velocities. Three layers of woven kenaf mats were stacked with four different fiber orientations 0, 15, 30 and 450. The composites are fabricated using hand-layout where the woven mats were placed into the mould with a polymeric resin. The wetted composites were compressed to squeeze out the excessive resin and to eliminate the void contents. The hardened samples were shaped into a standard geometry specified by ASTM D3763. Then, the composites were perforated impact using different speeds 1, 2 and 3 m/s. According to the present results, it was found that the perforated impact strength reduced when the impact velocity was increased. However, the impact strength of 150 oriented composite was higher when compared with other types of composites.


2014 ◽  
Vol 35 (10) ◽  
pp. 1900-1910 ◽  
Author(s):  
Yakubu Dan-Mallam ◽  
Mohamad Zaki Abdullah ◽  
Puteri Sri Melor Megat Yusoff

2016 ◽  
Vol 11 (1) ◽  
pp. 155892501601100
Author(s):  
M. F. M. Alkbir ◽  
S. M. Sapuan ◽  
A. A. Nuraini ◽  
M. R. Ishak

The aim of this paper is to study the effect of fiber content on the crashworthiness parameters (i.e., energy absorption and stroke efficiency) and the failure modes of a non-woven kenaf (mat) fiber-reinforced hexagonal composite tube. The composite was prepared and fabricated using the hand-lay-up method; fabrication was followed by axial compression testing using an Instron 3382 machine. Various fiber contents were considered, including 25%, 30%, 35% and 40%. A fiber content of 25% to 30% (mass percent) resulted in the best crashworthiness parameters. Furthermore, the amount of energy absorbed decreased as the fiber content increased, as did the mean crash load and the stroke efficiency. A few distinct failure modes were identified during the experiments, including the progressive failure mode, in which failure begins at the top end of the tube, and the transverse crack failure mode, which is associated with the buckling failure mode; after the crash occurs, the top or bottom end of the hexagonal tube begins to break and is fragmented into small pieces.


2016 ◽  
Author(s):  
Azmi Harun ◽  
Che Hassan Che Haron ◽  
Jaharah A. Ghani ◽  
Suhaily Mokhtar ◽  
Asmawi Sanuddin

Kenaf Fiber is one of natural fibers which becoming popular as a reinforced for plastic composite material in the industrial application such as aircraft, automotive, sporting goods, and marine engineering. In machined kenaf fiber composite, the important factor should be control is the delamination factor in order to control the quality of product. The delamination of a milled kenaf reinforced plastic is depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic. In this study, the composite panels were fabricated using vacuum assisted resin transfer molding (VARTM) method. A full factorial design of experiments was used as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modeling equation which has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modeling equations to minimize delamination factor of milled kenaf fiber reinforced plastic composite. The spindle speed and feed rate contributed the most in affecting the delamination factor of kenaf fiber composite.


2015 ◽  
Vol 773-774 ◽  
pp. 43-47
Author(s):  
Al Emran Ismail ◽  
Muhammad Aiman Hasan ◽  
K.A. Kamaruddin

This present work investigated the perforated impact strength of woven kenaf fiber reinforced composites subjected to different projectile velocities. Three layers of woven kenaf mats were stacked with four different fiber orientations 0, 15, 30 and 450. The composites are fabricated using hand-layout where the woven mats were placed into the mould with a polymeric resin. The wetted composites were compressed to squeeze out the excessive resin and to eliminate the void contents. The hardened samples were shaped into a standard geometry specified by ASTM D3763. Then, the composites were perforated impact using different speeds 1, 2 and 3 m/s. According to the present results, it was found that the perforated impact strength reduced when the impact velocity was increased. However, the impact strength of 150 oriented composite was higher when compared with other types of composites.


2018 ◽  
Author(s):  
M. Suhaily ◽  
C. H. Che Hassan ◽  
A. G. Jaharah ◽  
H. Azmi ◽  
M. A. Afifah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document