scholarly journals Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

Author(s):  
Latifah A. Ghani ◽  
Nora’aini Ali ◽  
Nur Syafiqah A. Hassan
2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Indika Thushari ◽  
Juckrit Vicheanteab ◽  
Dao Janjaroen

Abstract This study presents solid waste management planning in an urban green area, Bangkok, Thailand based on the material flow analysis (MFA) and life cycle assessment (LCA). Global warming potential (GWP) of four scenarios for handling solid waste generated in Chulalongkorn University Centenary Park, 2018 was assessed concerning the different ratios of waste recycling, composting, incineration, and landfilling. The results show that alternative systems proposed will result in lower GWP than the existing waste management strategy. The MFA results reveal that the final weights of solid waste ending up in a landfill are 98.8, 101.9, 68.2, and 44.8 t yr− 1 for scenarios 1, 2, 3, and 4, respectively. Increased rates of landfill diversion by increased recycling, composting, and incineration decreased the quantity of solid waste disposed to the landfill and improved the environmental profile of the park waste management system. The LCA results found landfilling to be the dominant source of greenhouse gas (GHG) burdens, while waste recycling was found to result in the reduction of GHG. The results highlight that the use of MFA and LCA as a combined tool to evaluate the environmental performance of solid waste management systems provides valuable information for policy and decision-makers.


1998 ◽  
Vol 9 (4) ◽  
pp. 123-132 ◽  
Author(s):  
Shin-ichi Sakai ◽  
Takahiro Ukai ◽  
Shin-ya Urano ◽  
Hiroshi Takatsuki ◽  
Kazuo Nakamura ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John Ryter ◽  
Xinkai Fu ◽  
Karan Bhuwalka ◽  
Richard Roth ◽  
Elsa A. Olivetti

AbstractClimate change will increase the frequency and severity of supply chain disruptions and large-scale economic crises, also prompting environmentally protective local policies. Here we use econometric time series analysis, inventory-driven price formation, dynamic material flow analysis, and life cycle assessment to model each copper supply chain actor’s response to China’s solid waste import ban and the COVID-19 pandemic. We demonstrate that the economic changes associated with China’s solid waste import ban increase primary refining within China, offsetting the environmental benefits of decreased copper scrap refining and generating a cumulative increase in CO2-equivalent emissions of up to 13 Mt by 2040. Increasing China’s refined copper imports reverses this trend, decreasing CO2e emissions in China (up to 180 Mt by 2040) and globally (up to 20 Mt). We test sensitivity to supply chain disruptions using GDP, mining, and refining shocks associated with the COVID-19 pandemic, showing the results translate onto disruption effects.


2016 ◽  
Vol 35 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Leticia Sarmento dos Muchangos ◽  
Akihiro Tokai ◽  
Atsuko Hanashima

Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.


2016 ◽  
Vol 35 (3) ◽  
pp. 253-266 ◽  
Author(s):  
Leticia Sarmento dos Muchangos ◽  
Akihiro Tokai ◽  
Atsuko Hanashima

Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×103 tonnes in 2007 to 437×103 tonnes in 2014, whereas the total material recovery was insignificant in both years – 3×103 and 7×103 tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×103 to 253×106 tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×103 to 158×103 tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.


Sign in / Sign up

Export Citation Format

Share Document