scholarly journals Nickel zinc ferrite thick film as substrate overlay for improved performance of microstrip patch antenna

Author(s):  
I H Hasan ◽  
M N Hamidon ◽  
A Ismail ◽  
I Ismail ◽  
M A M Kusaimi ◽  
...  
Author(s):  
Intan Helina Hasan ◽  
Mohd Nizar Hamidon ◽  
Ismayadi Ismail ◽  
Alyani Ismail ◽  
Muhammad Asnawi Mohd Kusaimi ◽  
...  

2016 ◽  
Vol 9 (3) ◽  
pp. 599-605 ◽  
Author(s):  
Saurabh Kumar ◽  
Dinesh Kumar Vishwakarma

In this paper, a miniaturized coaxial feed curved-slotted microstrip patch antenna over a fractalized uniplanar compact electromagnetic bandgap (F-UC-EBG) ground plane is proposed and investigated. Compact size is achieved by cutting the curved slots along the orthogonal directions of the patch radiator. The curved-slotted microstrip patch antenna is 38.30% miniaturized as compared with the conventional microstrip patch antenna resonating at 2.38 GHz. Furthermore, the ordinary ground plane of the curved slotted patch antenna is replaced by the F-UC-EBG ground plane. Due to the slow wave phenomenon created in the F-UC-EBG structure and the better impedance matching at the lower frequency further miniaturization and improved performance are obtained. The proposed antenna shows 74.76% miniaturization as compared with the conventional microstrip patch antenna resonating at 1.57 GHz and has 2.61% 10-dB fractional bandwidth, 1.49 dB gain, and 81.59% radiation efficiency. The proposed antenna is fabricated on a low-cost FR4 substrate having an overall volume of 0.184λ0 × 0.184λ0 × 0.0236λ0 at 1.57 GHz GPS band. The measured and simulated results are in good agreement and predicting appropriateness of the antenna in portable and handheld communication systems for GPS applications.


Author(s):  
Kinde Anlay Fante ◽  
Mulugeta Tegegn Gemeda

In this paper, a 28 GHz broadband microstrip patch antenna (MSPA) for 5G wireless applications is presented. The Rogers RT/Duroid5880 substrate material, with a dielectric constant of 2.2, the thickness of 0.3451 mm, and loss tangent of 0.0009, is used for the studied antenna to operate at 28 GHz center frequency. The proposed design of antenna is simulated by using CST studio suite. The simulation results highlight that the studied antenna has a return loss of -54.49 dB, a bandwidth of 1.062 GHz, a gain of 7.554 dBi. Besides, radiation efficiency and the sidelobe level of the proposed MSPA are 98% and 18.4 dB, respectively. As compared to previous MSPA designs reported in the recent scientific literature, the proposed rectangular MSPA has achieved significantly improved performance in terms of the bandwidth, beam-gain, return loss, sidelobe level, and radiation efficiency. Hence, it is a potential contender antenna type for emerging 5G wireless communication applications.


Author(s):  
PREET KAUR ◽  
RAJIV NEHRA ◽  
MANJEET KADIAN ◽  
DR. ASOK DE ◽  
DR. S.K. AGGARWAL

In this paper, two novel defected ground structures (DGS) are proposed to improve the return loss, compactness, gain and radiation efficiency of rectangular microstrip patch antenna. The performance of antenna is characterized by the shape, dimension & the location of DGS at specific position on ground plane. By incorporating a peacock shaped slot of optimum geometries at suitable location on the ground plane, return loss is enhanced from -23.89 dB to -43.79 dB, radiation efficiency is improved from 97.66% to 100% and compactness of 9.83% is obtained over the traditional antenna .Simulation results shows that the patch antenna with star shaped DGS can improve the impedance matching with better return loss of -35.053 dB from -23.89 dB and compactness of 9% is achieved. In the end comparison of both DGS shapes is carried out to choose one best optimize one. The proposed antennas are simulated and analyzed using Ansoft HFSS (version 11.1) software.


2013 ◽  
Author(s):  
Laxmi Sharma ◽  
Meenakshi Chauhan ◽  
Yogesh Bhomiya ◽  
Garima Mathur

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 32601-32611 ◽  
Author(s):  
Intan Helina Hasan ◽  
Mohd Nizar Hamidon ◽  
Alyani Ismail ◽  
Ismayadi Ismail ◽  
Anwer Sabah Mekki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document