scholarly journals Safety assessment of near surface disposal for radioactive waste in Serpong nuclear area using PRESTO software

Author(s):  
Sucipta ◽  
D Suganda
Author(s):  
JooWan Park ◽  
Chang-Lak Kim ◽  
Jin Beak Park ◽  
Eun Yong Lee ◽  
Youn Myoung Lee ◽  
...  

An integrated safety assessment system to be used for evaluation of near-surface disposal concept has been developed within the framework of safety assessment methodology taken for low- and intermediate-level radioactive waste disposal in Korea. It is to provide an evaluation of the safety of the disposal system in a clear, comprehensive and well-documented manner, and to integrate the results into a defensible package showing reasonable assurance of compliance with regulatory requirements for licensing application. This system is made up of two key components, a system-level safety assessment code and an input database/quality assurance module for safety assessment, which both are interfaced with each other.


2020 ◽  
pp. 21-27
Author(s):  
D. Bugai ◽  
R. Avila

The very low-level waste (VLLW) produced during decommissioning of nuclear facilities can be suitable for disposal in landfill type facilities. Considering the similarities in design, the experience gained in near-surface disposal of radioactive waste in trenches and vaults is relevant to the issue of VLLW disposal in landfills. This paper presents a brief review of internationally reported cases of radionuclide releases from near-surface disposal facilities. Based on this review, the conclusions are made that the following radionuclide release and exposure scenarios should be accounted for in safety assessment of VLLW disposal in landfills: i) leaching from waste to groundwater by atmospheric precipitations; ii) bath-tubing scenario; iii) scenarios caused by extreme meteorological and hydrological events (erosion, flooding, etc.); iv) human intrusion. The gaseous transport deserves attention for a number of relevant radionuclides, such as (C-14, Rn-222, etc.). In addition, the possibility of early degradation of engineered containment structures (soil covers, bottom seals) should be cautiously considered.


2008 ◽  
Vol 161 (2) ◽  
pp. 156-168 ◽  
Author(s):  
J. Mazeika ◽  
R. Petrosius ◽  
V. Jakimaviciute-Maseliene ◽  
D. Baltrunas ◽  
K. Mazeika ◽  
...  

Author(s):  
Maria Visitacion Palattao ◽  
Edmundo Vargas ◽  
Rolando Reyes ◽  
Carl Nohay ◽  
Alfonso Singayan ◽  
...  

The Philippine Nuclear Research Institute (PNRI) in collaboration with the interagency technical committee on radioactive waste has been undertaking a national project to find a final solution to the country’s low to intermediate level radioactive waste. The strategy adopted was to co-locate 2 disposal concepts that will address the types of radioactive waste generated from the use of radioactive materials. This strategy is expected to compensate for the small volumes of waste generated in the Philippines as compared to countries with big nuclear energy programs. It will also take advantage of the benefits of a shared infrastructure and R&D work that accompany such project. The preferred site selected from previous site selection and investigations is underlain by highly fractured “andesitic volcaniclastics” mantled by residual clayey soil which act as the aquifer or water bearing layer. Results of investigation show that the groundwater in the area is relatively dilute and acidic. Springs at the lower elevations of the footprint also indicate acidic waters. The relatively acidic water is attributed to the formation of sulfuric acid by the oxidation of the pyrite in the andesite. A preliminary post closure safety assessment was carried out using the GMS MODFLOW and HYDRUS softwares purchased through the International Atomic Energy Agency (IAEA) technical assistance. Results from MODFLOW modeling show that the radionuclide transport follows the natural gradient from the top of the hill down to the natural discharge zones. The vault dispersion model shows a circular direction from the vaults towards the faults and eventually to the creeks. The contaminant transport from borehole shows at least one confined plume from the borehole towards the creek designated as Repo1 and eventually follows downstream. The influx of surface water and rainfall to the disposal vault was modeled using the HYDRUS software. The pressure head and water content at the base of the foundation layer and the bottom of the concrete is where a significant reduction in water content can be observed. It is also noted that water content and pressure remain constant after one year.


Sign in / Sign up

Export Citation Format

Share Document