scholarly journals Optimal design through the utility function parameterization method on electromechanical actuators

Author(s):  
R I Coteţiu ◽  
A Moldovan ◽  
I M Alexandrescu ◽  
V Năsui
Author(s):  
Vijitashwa Pandey ◽  
Zissimos P. Mourelatos ◽  
Monica Majcher

Optimization is needed for effective decision based design (DBD). However, a utility function assessed a priori in DBD does not usually capture the preferences of the decision maker over the entire design space. As a result, when the optimizer searches for the optimal design, it traverses (or ends up) in regions where the preference order among different solutions is different from the actual order. For a highly non-convex design space, this can lead to convergence to a grossly suboptimal design depending on the initial design. In this article, we propose two approaches to alleviate this issue. First, we map the trajectory of the solution as generated by the optimizer and generate ranking questions that are presented to the designer to verify the correctness of the utility function. We then propose backtracking rules if a local utility function is very different from the initially assessed function. We demonstrate our methodology using a mathematical example and a welded beam design problem.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110011
Author(s):  
Jose J Corona ◽  
Osama Mesalhy ◽  
Louis Chow ◽  
Quinn Leland ◽  
John P Kizito

In the current work, the objective is to determine the best efficiency point (BEP) of an axial fan using CFD. Analyzing the performance of the fan based upon the parameters chosen can lead to the optimal design of an axial flow fan for aerospace applications where the ambient pressure varies rapidly. The 2-bladed fan chosen for the study is the Propimax 2L which is considered the base fan used for comparison of all the results of the work. The set of parameters tested were fan rotational speed, ambient pressure conditions, blade count, and the airfoil design. All the performance measures were based on overall fan efficiency. The results yield the following: an increased rotational speed led to higher efficiencies, the most efficient ambient pressure of which the fan can perform is 0.7 atm, a 5-bladed fan configuration produced the highest efficiency, and airfoil selection is critical for fan efficiency enhancements. The results demonstrated that at 0.7 atm the fan efficiency is the highest due to the changes in power consumption to the density effect. A key finding in the work is that higher blade counts do not necessarily lead to higher performing axial fans. A high cambered airfoil provided a higher flow rate at free delivery than that of the Propimax 2L design, but the rotorcraft airfoil did not yield favorable results. The analysis is focused on the fan design of cooling of the electromechanical actuators (EMAs).


1988 ◽  
Vol 18 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Martina Vandebroek

AbstractThe Pareto-optimal design for profit-sharing is derived under general assumptions as to the utility function of both the insured and the insurer. This generalizes the result of Jones and Gerber and explains commonly used dividend formulas in terms of risk aversion.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


Author(s):  
Muklas Rivai

Optimal design is a design which required in determining the points of variable factors that would be attempted to optimize the relevant information so that fulfilled the desired criteria. The optimal fulfillment criteria based on the information matrix of the selected model.


Sign in / Sign up

Export Citation Format

Share Document