scholarly journals Numerical study of a container ship model for the uncoupled parametric rolling

Author(s):  
D Deleanu ◽  
C L Dumitrache
2019 ◽  
Author(s):  
Shuang Wang ◽  
Junkai Wei ◽  
Xuanshu Chen ◽  
Liwei Liu ◽  
Zhiguo Zhang

Abstract As a type of the ship stability failure modes, parametric rolling has attracted more attention from many researchers in recent years because of a series of accidents due to ship instability, especially the instability of container ship. Parametric rolling is a complex nonlinear stochastic dynamic problem, which is often accompanied by large amplitude vertical motions of ships. At present, there are many difficulties in the research of ship parameter rolling, mainly including the nonlinearity of parameter rolling motion, the random variation of wetted area of the hull surface up to the incident wave waterline and the coupling effect of rolling, pitching and heaving. Nowadays, the potential flow theory is a common method to predict parametric rolling, but this method may generate results with low accuracy in some conditions. This paper describes a numerical simulation method based on in-house CFD code HUST-Ship to analyze parametric rolling motion of KCS (KRISO Container Ship) container ship model. The paper studies the occurring conditions of parametric rolling motion of KCS model and reveals the mechanism of parametric rolling.


2019 ◽  
Vol 58 (3) ◽  
pp. 849-859 ◽  
Author(s):  
Ahmed G. Elkafas ◽  
Mohamed M. Elgohary ◽  
Akram E. Zeid

2020 ◽  
Vol 64 (01) ◽  
pp. 61-80
Author(s):  
Ping-Chen Wu ◽  
Md. Alfaz Hossain ◽  
Naoki Kawakami ◽  
Kento Tamaki ◽  
Htike Aung Kyaw ◽  
...  

Ship motion responses and added resistance in waves have been predicted by a wide variety of computational tools. However, validation of the computational flow field still remains a challenge. In the previous study, the flow field around the Korea Research Institute for Ships and Ocean Engineering (KRISO) Very Large Crude-oil Carrier 2 tanker model with and without propeller condition and without rudder condition was measured by the authors, as well as the resistance and self-propulsion tests in waves. In this study, the KRISO container ship model appended with a rudder was used for the higher Froude number .26 and smaller block coefficient .65. The experiments were conducted in the Osaka University towing tank using a 3.2-m-long ship model for resistance and self-propulsion tests in waves. Viscous flow simulation was performed by using CFDShip-Iowa. The wave conditions proposed in Computational Fluid Dynamics (CFD) Workshop 2015 were considered, i.e., the wave-ship length ratio λ/L = .65, .85, 1.15, 1.37, 1.95, and calm water. The objective of this study was to validate CFD results by Experimental Fluid Dynamics (EFD) data for ship vertical motions, added resistance, and wake flow field. The detailed flow field for nominal wake and self-propulsion condition will be analyzed for λ/L = .65, 1.15, 1.37, and calm water. Furthermore, bilge vortex movement and boundary layer development on propeller plane, propeller thrust, and wake factor oscillation in waves will be studied.


2004 ◽  
Vol 36 (6) ◽  
pp. 833-846 ◽  
Author(s):  
Bu Geun Paik ◽  
Choung Mook Lee ◽  
Sang Joon Lee

2020 ◽  
Vol 211 ◽  
pp. 107594
Author(s):  
Emil Shivachev ◽  
Mahdi Khorasanchi ◽  
Sandy Day ◽  
Osman Turan

Author(s):  
Manases Tello Ruiz ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
Evert Lataire ◽  
Marc Vantorre

Abstract The IMO Intact Stability Code considers the parametric rolling phenomenon as one of the stability failure modes because of the larger roll angles attained. This hazardous condition of roll resonance can lead to loss of cargo, passenger discomfort, and even (in the extreme cases) the ship’s capsize. Studies as such are mostly conducted considering wave characteristics corresponding to wave lengths around one ship length (λ ≈ LPP) and wave amplitudes varying from moderate to rough values. These wave characteristics, recognised as main contributors to parametric rolling, are frequently encountered in deep water. Waves with lengths of such magnitudes are also met by modern container ships in areas in close proximity to ports, but with less significant wave amplitudes. In such areas, due to the limited water depth and the relatively large draft of the ships, shallow water effects influence the overall ship behaviour as well. Studies dedicated to parametric rolling occurrence in shallow water are scarce in literature. In spite of no accidents being yet reported in such scenarios, its occurrence and methods for its prediction require further attention; this in order to prevent any hazardous conditions. The present work investigates the parametric roll phenomenon numerically and experimentally in shallow water. The study is carried out with the KRISO container ship (KCS) hull. The numerical investigation uses methods available in literature to study the susceptibility and severity of parametric rolling. Their applicability to investigate this phenomenon in shallow water is also discussed. The experimental analysis was carried out at the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University). Model tests comprised a variation of different forward speeds, wave amplitudes and wave lengths (around one LPP). The water depth was fixed to a condition equivalent to a gross under keel clearance (UKC) of 100% of the ship’s draft.


Author(s):  
Suresh Rajendran ◽  
C. Guedes Soares

Parametric rolling of a post-Panamax C11 class containership in regular and irregular waves is numerically investigated using body nonlinear time domain methods based on strip theory. The Froude-Krylov and the hydrostatic forces are calculated for the exact wetted surface area under the undisturbed incident wave profile. Two kinds of formulations are used for calculation of the radiation forces. The first one employs a linear radiation force in which the frequency dependent hydrodynamic coefficients are calculated for mean position of the sections at mean water level. The second formulation calculates the hydrodynamic coefficients for the exact submerged depth of ship sections under the undisturbed incident wave profile, and hence called as body nonlinear radiation force. The numerical results from the aforementioned formulations are compared with each other, and also with experimental results obtained from a wave tank in both regular and irregular waves. For all the cases in regular waves, the vulnerability to parametric rolling is clearly identified by the numerical models, even though a few discrepancies are observed in the estimation of the severity (maximum roll angle) of the problem. In this paper, the effects of the linear and body nonlinear radiation forces on the numerical calculation of parametric rolling of a container ship and the ability of the numerical methods to identify parametric rolling are investigated.


Sign in / Sign up

Export Citation Format

Share Document