scholarly journals Mechanical characterization of mortars used in the restoration of historical buildings: an operative atlas for maintenance and conservation

Author(s):  
A Grazzini ◽  
M Zerbinatti ◽  
S Fasana
2020 ◽  
Vol 150 ◽  
pp. 03022
Author(s):  
Sana Simou ◽  
Khadija Baba ◽  
Nacer Akkouri ◽  
Mohammed Lamrani ◽  
Mohammed Tajayout ◽  
...  

The evaluation of historical buildings has always posed significant challenges due to the difficulties associated with the characterization of complex geometries, the variability of the properties of building materials and the actual state of damage to these structures. This challenge is even more complex when it concerns historical adobe masonry buildings, because earthen masonry has a high variability and rapid deterioration over time if it is not properly maintained. In the context of the previous, it was important to provide information to support intervention projects in historic centres. This research involves the experimental analysis of the adobe material collected from the Chellah archaeological site (Rabat-Morocco), in order to study the mechanical behaviour of this material as well as that reinforced by wood shaving. A series of mechanical tests carried out, which include compressive and tensile strength on the adobe material and the mixture adobe/wood fibre in different proportions. The improvement of the mechanical properties of the reinforced adobe, led us to a SEM study, which was carried out on the surface of the test specimens to examine the morphology and observe the interfaces of the adobe/wood mixture, as well as the state of dispersion of the fibres in the adobe mixture.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Alexandre Luiz Pereira ◽  
Rafael Oliveira Santos ◽  
DOINA BANEA ◽  
Álisson Lemos

Sign in / Sign up

Export Citation Format

Share Document