scholarly journals Calculations of Loss Factor Based on Real-Time Data: Determining Technical Power Loss for the Electrical Distribution Network in Karbala City

Author(s):  
Sabah Hassan Alwan ◽  
Ali Abdul Razzaq Altahir ◽  
Ahmad Salman Al Tu’ma
Author(s):  
Jitendra Singh Bhadoriya ◽  
Atma Ram Gupta

Abstract Most of the generated electricity is lost in power loss while transmitting and distributing it to the consumer end. The power losses occurring in the distribution network cause deviation in voltage and lower stability due to increased load demand. The integration of multiple Distributed Generation (DG) will enable the existing radial electrical distribution network efficient by minimizing the power losses and improving the voltage profile. Metaheuristic optimization techniques provide a favorable solution for optimal location and sizing of DG in the distribution network. A novel modern metaheuristic Transient Search Optimization (TSO) algorithm, inspired by the electrical network’s transient response of storage components implemented in the proposed work. The TSO formulated optimal DGs allocation to minimize total active power loss, voltage deviation and enhance voltage stability index as minimization optimization problem satisfying various equality and inequality constraints. The installation of multiple DG units at unity, fixed, and optimal power factors were examined. The TSO algorithm’s effectiveness was tested on standard IEEE 33-bus and 69-bus radial distribution networks, including various operating events developed in the form of single and multi-objective fitness functions. The active power loss reduced to 94.29 and 94.71% for IEEE 33 and 69 bus distribution systems. The obtained results trustworthiness is confirmed by comparison with well-known optimization methods like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), combined GA/PSO, Teaching Learning Based Algorithm (TLBO), Swine influenza model-based optimization with quarantine (SIMBO-Q), Multi-Objective Harris Hawks optimizer (MOHHO) and other provided in the literature. The presented numerical studies represent the usefulness and out-performance of the proposed TSO algorithm due to its exploration and exploitation optimization mechanisms for the DG allocation problem meticulously.


2014 ◽  
Vol 548-549 ◽  
pp. 1800-1803 ◽  
Author(s):  
Gen Yuan Zhang

Hydraulic simulation models of water pipe networks (WPN) are routinely used for operational investigations and network design purposes. However, their full potential is often never realized because in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and reflects the network operational conditions that were prevalent at that time. They were then applied as part of a reactive investigation. An urban water distribution network real time simulation system based on EPANET system using OPC (object linking and Embedding for Process control) communication was built in this paper. In order to make real-time simulation of water distribution network, the real-time data was collected every 15 minutes, the real time data were received and sent into water distribution network simulation model by OPC communication of EPANET system. The real-time data included total head of reservoir, flow rate, pressure, pump operation information. The real-time simulation system can give timely warning of changes for normal network operation, providing capacity to minimize customer impact and comparing the simulation results with the real-time data collected. The real time simulation system of urban water pipe network solved the problem of data input and user interaction compare to traditional network model. It offers a way for the development of intelligent water network.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

Sign in / Sign up

Export Citation Format

Share Document