scholarly journals Temperature aging effects on mechanical behavior of structural GFRP on interlaminar shear tests

Author(s):  
D S Lobanov ◽  
E M Zubova
Author(s):  
Yifei Zhang ◽  
Zijie Cai ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. In our prior work on aging effects, we have demonstrated that the observed material behavior variations of Sn-Ag-Cu (SAC) lead free solders during room temperature aging (25°C) and elevated temperature aging (125°C) were unexpectedly large and universally detrimental to reliability. Such effects for lead free solder materials are especially important for the harsh applications environments present in high performance computing and in automotive, aerospace, and defense applications. However, there has been little work in the literature, and the work that has been done has concentrated on the degradation of solder ball shear strength (e.g. Dage Shear Tester). Current finite element models for solder joint reliability during thermal cycling accelerated life testing are based on traditional solder constitutive and failure models that do not evolve with material aging. Thus, there will be significant errors in the calculations with the new lead free SAC alloys that illustrate dramatic aging phenomena. In the current work, we have extended our previous studies to include a full test matrix of aging temperatures and solder alloys. The effects of aging on mechanical behavior have been examined by performing stress-strain and creep tests on four different SAC alloys (SAC105, SAC205, SAC305, SAC405) that were aged for various durations (0–6 months) at room temperature (25°C), and several elevated temperatures (50, 75, 100, and 125°C). Analogous tests were performed with 63Sn-37Pb eutectic solder samples for comparison purposes. Variations of the mechanical and creep properties (elastic modulus, yield stress, ultimate strength, creep compliance, etc.) were observed and modeled as a function of aging time and aging temperature. In this paper, we report on the creep results. The chosen selection of SAC alloys has allowed us to explore the effects of silver content on aging behavior (we have examined SACN05 with N = 1%, 2%, 3%, and 4% silver; with all alloys containing 0.5% copper). In order to reduce the aging induced degradation of the material behavior of the SAC alloys, we are testing several doped SAC alloys in our ongoing work. These materials include SAC0307-X, SAC105-X, and SAC305-X; where the standard SAC alloys have been modified by the addition of small percentages of one or more additional elements (X). Using dopants (e.g. Bi, In, Ni, La, Mg, Mn, Ce, Co, Ti, etc.) has become widespread to enhance shock/drop reliability, and we have extended this approach to examine the ability of dopants to reduce the effects of aging and extend thermal cycling reliability.


Author(s):  
GKR Pereira ◽  
M Amaral ◽  
PF Cesar ◽  
MC Bottino ◽  
CJ Kleverlaan ◽  
...  

2015 ◽  
Vol 515 ◽  
pp. 54-61 ◽  
Author(s):  
А.V. Fetisov ◽  
G.А. Kozhina ◽  
S.Kh. Estemirova ◽  
V.Ya. Mitrofanov

Author(s):  
G.K.R. Pereira ◽  
C. Muller ◽  
V.F. Wandscher ◽  
M.P. Rippe ◽  
C.J. Kleverlaan ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1253 ◽  
Author(s):  
Daiva Zeleniakiene ◽  
Gediminas Monastyreckis ◽  
Andrey Aniskevich ◽  
Paulius Griskevicius

This work is aimed at the development of finite element models and prediction of the mechanical behavior of MXene nanosheets. Using LS-Dyna Explicit software, a finite element model was designed to simulate the nanoindentation process of a two-dimensional MXene Ti3C2Tz monolayer flake and to validate the material model. For the evaluation of the adhesive strength of the free-standing Ti3C2Tz-based film, the model comprised single-layered MXene nanosheets with a specific number of individual flakes, and the reverse engineering method with a curve fitting approach was used. The interlaminar shear strength, in-plane stiffness, and shear energy release rate of MXene film were predicted using this approach. The results of the sensitivity analysis showed that interlaminar shear strength and in-plane stiffness have the largest influence on the mechanical behavior of MXene film under tension, while the shear energy release rate mainly affects the interlaminar damage properties of nanosheets.


Sign in / Sign up

Export Citation Format

Share Document