scholarly journals The Calculation of Friction Heat and Thermal Analysis of Spur Gears Based on Thermal Elastohydrodynamic Lubrication Theory

Author(s):  
Shuyi Liu ◽  
Chen Qi
2010 ◽  
Vol 29-32 ◽  
pp. 857-861
Author(s):  
Jian Ping Liu ◽  
Xin Yi Zhang ◽  
Qing Xuan Jia

Considering lumen elastic deformation, Reynolds equation is deduced based on non-Newtonian model in this paper. Traction force and hydrodynamic mucus film thickness are calculated according to elastohydrodynamic lubrication theory. Compared with results based on Newtonian model and experiments, analysis based on non-Newtonian model reflects practical condition well. Lumen elastic deformation has some influence on traction force and mucus film thickness.


1993 ◽  
Vol 115 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Shifeng Wu ◽  
H. S. Cheng

In gear applications where precipitous tooth failure mode such as scoring or scuffing has been avoided, “normal” wear becomes a life-determining factor. In this paper, sliding wear in spur gears, including the considerations of gear dynamics and rough-elastohydrodynamic lubrication, is analyzed. Formulas for equivalent wear rate and tooth wear profile along the line of action are derived. Results show that most materials are removed from both the addendum and dedendum tooth surfaces, and that the highest wear occurs at the beginning of an engagement. This high wear region corresponds to the root of the driving (pinion) teeth and the tip of the driven (gear) teeth. These analytical results correlate well with the practical evidences in AGMA documentation.


2012 ◽  
Vol 151 ◽  
pp. 155-159
Author(s):  
Jin Zhi Zhao ◽  
Yuan Tao Liu ◽  
Ze Xiang Zhao

Service mode and dynamic network interfere techniques are analyzed. An elastohydrodynamic lubrication oil thickness theory of rolling bearing type planetary friction transmission mechanism system based on web is presented.Elastohydrodynamic lubrication theory is adopted in rolling bearing type planetary friction transmission mechanism in this paper. Research indicates that elastohydrodynamic oil file lubrication can be realized while mechanical parts with connection between points or lines run under certain conditions. At the same time, surface disrepair of the parts has relation to lubrication state. Minimal oil film thickness formula is deduced based on the elastohydrodynamic lubrication theory. It is a part of He’nan Scientific Committee science and technology research projects 《research on collaborative design and manufacturing technique in gear manufacturing based on network and multi-Agent》


Author(s):  
Masoud Kimiaei ◽  
Saleh Akbarzadeh

Spur gears are one of the most important tools for power transmission in the industry and thus can be considered a key mechanical element. As a result of power transmission, gears might fail or experience wear and fatigue. So the improvement in the design and modification of tooth profile of gears can significantly reduce friction loss and wear of the gear teeth and therefore it increases the useful life, improves the quality, and reduces the cost. The purpose of this study is to show the influence of addendum modification on the tribological performance of spur gears which are operating in the mixed elastohydrodynamic lubrication. In this paper, a model based on the load-sharing concept is employed to study the effect of changing addendum modification on the performance of spur gears, the amount of wear rate, and the lubricant film thickness. To this end, a model based on the load-sharing concept is employed which takes the geometry and lubricant properties as input and predicts the friction coefficient, load carried by fluid film and asperities, efficiency, and wear rate as output.


2020 ◽  
Vol 10 (16) ◽  
pp. 5417
Author(s):  
Fuchun Jia ◽  
Yulong Lei ◽  
Yao Fu ◽  
Binyu Wang ◽  
Jianlong Hu

Theoretical calculation and numerical simulation are used to investigate the lubricating oil demand of spur gears. In accordance with the function of lubricating oil during the meshing process, oil demand is regarded as the superposition of oil for lubrication and cooling. Oil for lubrication is calculated in accordance with meshing and elastohydrodynamic lubrication (EHL) theories. Oil for cooling is obtained from friction heat. The influence of different meshing positions on lubricating oil demand is analysed, and the effects of modulus, tooth number, transmission ratio, input speed and input torque on lubricating oil demand is investigated using a control variate method. Simulation results indicated that oil for lubrication and oil for cooling have two maxima each during a meshing circle. The influences of different gear parameters and working conditions on lubricating oil demand are compared. The results showed that the oil volume for lubrication increases and oil volume for cooling decreases as the modulus, tooth number and transmission ratio of the gear increase, the oil volume for lubrication and oil volume for cooling increases as the input speed and input torque increase.


Sign in / Sign up

Export Citation Format

Share Document