scholarly journals Demand Analysis of Lubricating Oil in Spur Gear Pairs

2020 ◽  
Vol 10 (16) ◽  
pp. 5417
Author(s):  
Fuchun Jia ◽  
Yulong Lei ◽  
Yao Fu ◽  
Binyu Wang ◽  
Jianlong Hu

Theoretical calculation and numerical simulation are used to investigate the lubricating oil demand of spur gears. In accordance with the function of lubricating oil during the meshing process, oil demand is regarded as the superposition of oil for lubrication and cooling. Oil for lubrication is calculated in accordance with meshing and elastohydrodynamic lubrication (EHL) theories. Oil for cooling is obtained from friction heat. The influence of different meshing positions on lubricating oil demand is analysed, and the effects of modulus, tooth number, transmission ratio, input speed and input torque on lubricating oil demand is investigated using a control variate method. Simulation results indicated that oil for lubrication and oil for cooling have two maxima each during a meshing circle. The influences of different gear parameters and working conditions on lubricating oil demand are compared. The results showed that the oil volume for lubrication increases and oil volume for cooling decreases as the modulus, tooth number and transmission ratio of the gear increase, the oil volume for lubrication and oil volume for cooling increases as the input speed and input torque increase.

Author(s):  
Yanfang Liu ◽  
Qiang Liu ◽  
Peng Dong

An involute spur gear pair meshing model is firstly provided in this study to achieve relevant data such as rolling velocity, sliding velocity, curvature radius etc. These data are needed in a transient, Newtonian elastohydrodynamic lubrication (EHL) model which is provided later. Based on these two models, the behavior of an engaged spur gear pair during the meshing process is investigated under dynamic conditions, film thickness, pressure, friction coefficient etc. could be achieved through the models. Then, power loss under certain operating condition is calculated. Relationship between power loss and lubrication performance is also analyzed.


2011 ◽  
Vol 121-126 ◽  
pp. 3506-3509
Author(s):  
You Qiang Wang ◽  
Zhi Cheng He ◽  
Wei Su

Spur gear contacts experience a number of time-varying contact parameters including the load, surface velocities, radii of curvature, and slide-to-roll ratio. It is very hard to obtain transient elastohydrodynamic lubrication (EHL) solution of spur gears. In this study, a transient EHL model of involute spur gear tooth contacts is proposed. A full transient EHL solution of involute spur gear under impact load is obtained by utilizing the multigrid technique. The influences of impact load on the EHL of spur gear are analyzed in the paper. The numerical results show that the approach impact load has strong transient influence on the oil film thickness and pressure distribution between contact zones. The impact load may lead to instantaneous lubrication film deterioration between contact teeth of involute spur gears.


2005 ◽  
Vol 128 (3) ◽  
pp. 626-633 ◽  
Author(s):  
Raynald Guilbault

Refined dynamic analyses of gear pairs, including precise tooth contact description, often lead to unreasonable simulation requirements. Therefore, numerous models employ simplifications, such as two-dimensional deflection of the engaged gear set, which is inappropriate for wide-faced wheels. Other models propose three-dimensional (3D) representation of one tooth on a complete hub. This approach introduces the torsional and flexural deflection of the gear body, but underestimates the corresponding stiffness. Since forthcoming improvements of gear analysis should offer efficient 3D dynamic simulation of wide-faced gear sets, this paper primarily quantifies the flexibility error levels implied with 3D one tooth full hub spur gear models. Subsequently, a procedure is developed to determine the number of teeth required for a 3D model so that it will include the torsional and flexural flexibility of the spur gear body, within acceptable error levels. This procedure offers an efficient approach to optimize the (precision)/(simulation time) ratio. The method deals with gears of any diametral pitch, and covers the common face width and tooth number ranges.


1976 ◽  
Vol 98 (2) ◽  
pp. 635-641 ◽  
Author(s):  
K. Fujita ◽  
F. Obata ◽  
K. Matsuo

The correlation between the oil supply conditions, such as oil jet velocity, oil-nozzle position and its direction, and the scoring resistance of spur gear pair has been studied. The influence of the oil supply conditions on the instantaneous behaviors of the lubricating oil supplied onto the tooth flanks were brought to light by stroboscopic photographs. The scoring resistance was greatly affected by the oil supply conditions and the reasons were clarified by considering the instantaneous behaviors of lubricating oil. In order to have high scoring resistance, oil must be supplied over the whole working flank.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Zeliang Xiao ◽  
Zuodong Li ◽  
Xi Shi ◽  
Changjiang Zhou

The models of normal and tangential oil film damping are established by modeling the viscous-elastic fluid as massless damping elements. The central pressure and film thickness distributions, friction coefficient, and maximum temperature rise with or without considering thermal effect indicate the proposed damping models and the solutions to the damping are valid. Thereafter, the thermal effect on oil film damping is discussed and the effects of contact force, rotation speed, and tooth number of spur gears in line contact non-Newtonian transient thermal elastohydrodynamic lubrication (EHL) on the oil film damping are investigated. The results imply that the larger damping in the normal direction is beneficial to meshing impact resistance and vibration reduction, whereas the smaller damping in the tangential direction is very helpful for fluidity enhancement and friction heat inhibition.


1990 ◽  
Vol 112 (4) ◽  
pp. 590-595 ◽  
Author(s):  
J. H. Steward

In this paper, the requirements for an accurate 3D model of the tooth contact-line load distribution in real spur gears are summarized. The theoretical results (obtained by F.E.M.) for the point load compliance of wide-faced spur gear teeth are set out. These values compare well with experimental data obtained from tests on a large spur gear (18 mm module, 18 teeth).


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Huaiju Liu ◽  
Caichao Zhu ◽  
Zhanjiang Wang ◽  
Ye Zhou ◽  
Yuanyuan Zhang

A thermal elastohydrodynamic lubrication (TEHL) model is developed for a coated spur gear pair to investigate the effect of soft coatings and hard coatings on the tribological behavior of such a gear pair during meshing. The coating properties, i.e., the ratio of the Young's modulus between the coating and the substrate, and the coating thickness, are represented in the calculation of the elastic deformation. Discrete convolution, fast Fourier transform (DC-FFT) is utilized for the fast calculation of the surface deformation. The variation of the radius of curvature, the rolling speed, the slide-to-roll ratio, and the tooth load along the line of action (LOA) during meshing is taken into account and the transient squeeze effect is considered in the Reynolds equation. Energy equations of the solids and the oil film are derived. The temperature field and the pressure field are solved iteratively. The tribological behavior is evaluated in terms of the minimum film thickness, the maximum pressure, the temperature rise, the coefficient of friction, and the frictional power loss of the tooth contact during meshing. The results show discrepancies between the soft coating results and hard coating results.


2021 ◽  
Vol 263 (5) ◽  
pp. 1275-1285
Author(s):  
Joshua Götz ◽  
Sebastian Sepp ◽  
Michael Otto ◽  
Karsten Stahl

One important source of noise in drive trains are transmissions. In numerous applications, it is necessary to use helical instead of spur gear stages due to increased noise requirements. Besides a superior excitation behaviour, helical gears also show additional disadvantageous effects (e.g. axial forces and tilting moments), which have to be taken into account in the design process. Thus, a low noise spur gear stage could simplify design and meet the requirements of modern mechanical drive trains. The authors explore the possibility of combining the low noise properties of helical gears with the advantageous mechanical properties of spur gears by using spur gears with variable tip diameter along the tooth width. This allows the adjustment of the total length of active lines of action at the beginning and end of contact and acts as a mesh stiffness modification. For this reason, several spur gear designs are experimentally investigated and compared with regard to their excitation behaviour. The experiments are performed on a back-to-back test rig and include quasi-static transmission error measurements under load as well as dynamic torsional vibration measurements. The results show a significant improvement of the excitation behaviour for spur gears with variable tip diameter.


2019 ◽  
Vol 20 (6) ◽  
pp. 626 ◽  
Author(s):  
Guillaume Vouaillat ◽  
Jean-Philippe Noyel ◽  
Fabrice Ville ◽  
Xavier Kleber ◽  
Sylvain Rathery

The study of rolling contact fatigue in spur gears requires a good comprehension of all the phenomena occurring at the material scale. On a numerical point of view, a realistic representation of the material and of the load repartition function of the local micro-geometries is needed. However the resulting models are often complex and time-consuming. So, this work aims at developing a model meeting these specificities. Thus, different sections of the spur gear material granular geometry are simulated first. Secondly, the contact pressure fields are computed accurately relatively to the simulated surface microgeometry. Then, the influence of several parameters on their rolling contact fatigue life is highlighted. Among friction, sliding coefficient, load variation and roughness, these individual or combined parameters are taken into account in the model, tested and their impact stressed out. Finally, a fatigue criteria based on rolling contact fatigue micro-cracks nucleation at grain boundaries is proposed in order to compare simulations and influencing parameters to the reference.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohe Deng ◽  
Lin Hua ◽  
Xinghui Han

A design method for the geometric shape and modification of asymmetric spur gear was proposed, in which the geometric shape and modification of the gear can be obtained directly according to the rack-cutter profile. In the geometric design process of the gear, a rack-cutter with different pressure angles and fillet radius in the driving side and coast side was selected, and the generated asymmetric spur gear profiles also had different pressure angles and fillets accordingly. In the modification design of the gear, the pressure angle modification of rack-cutter was conducted firstly and then the corresponding modified involute gear profile was obtained. The geometric model of spur gears was developed using computer-aided design, and the meshing process was analyzed using finite element simulation method. Furthermore, the transmission error and load sharing ratio of unmodified and modified asymmetric spur gears were investigated. Research results showed that the proposed gear design method was feasible and desired spur gear can be obtained through one time rapid machining by the method. Asymmetric spur gear with better transmission characteristic can be obtained via involute modification.


Sign in / Sign up

Export Citation Format

Share Document