scholarly journals Increasing the efficiency of solar panel by solar tracking system

Author(s):  
A Imthiyas ◽  
S. Prakash ◽  
N Vijay ◽  
A Alwin Abraham ◽  
B Ganesh Kumar
Author(s):  
Balaji K ◽  
Dharshan T R ◽  
Mahendran P ◽  
Priyadharsini R

The renewable energies, solar energy is the only energy gained its popularity and importance quickly. Through the solar tracking system, we can produce an abundant amount of energy which makes the solar panel’s workability much more efficient. Perpendicular proportionality of the solar panel with the sun rays is the reason lying behind its efficiency. Pecuniary, its installation charge is high provided cheaper options are also available. The main control circuit is based upon NodeMcu microcontroller. Programming of this device is done in the manner that the LDR sensor, in accordance with the detection of the sun rays, will provide direction to the DC Motor that in which way the solar panel is going to revolve. Through this, the solar panel is positioned in such a manner that the maximum amount of sun rays could be received. Though a hike in the efficiency of the solar panel had a handsome increase still perfection was a far-fetched goal for it. Below 40%, most of the panels still hover to operate. Consequently, peoples are compelled to purchase a number of panels in order to meet their energy demands or purchase single systems with large outputs. Availability of the solar cells types with higher efficiencies is on provided they are too costly to purchase. Ways to be accessed for increasing solar panel efficiencies are a plethora in number still one of the ways to be availed for accomplishing the said purpose while reducing costs, is tracking. Tracking helps in the wider projection of the panel to the Sun with increased power output. It could be dual or single axis tracker


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2015 ◽  
Vol 793 ◽  
pp. 353-357
Author(s):  
F.S. Abdullah ◽  
H.M. Nuhafiz ◽  
O. Mardianaliza ◽  
A. Yusof ◽  
Noor Anida

Solar tracker is a device that detects the movement of the sun. Solar tracker receive maximum sun ray in order to produce the maximum power supply by the photovoltaic (PV) panels system. It also depends on the environment factor such as solar irradiation and temperature of the panels. This paper presents the development of the automatic solar tracking system, the construction of the sensor circuit, programming of the control system and also its performance analysis. This automatic solar tracking system is designed with an electronic circuit control using PIC that can trigger the dc motors when the LDR sensors detect sunlight. DC motor will move vertical and 360 ̊ horizontal to increase efficiency of sunlight to the solar panel. Solar panel for the project gets power supply from the battery. The battery will be charged using power from the solar panel.


2018 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Philippe Dondon ◽  
Pascal Gauterie ◽  
Renaud Charlet

Nowadays power generation is one of the greatest challenges of humanity in the framework of Sustainable Development. For example, as it is globally accepted sun tracking systems allows improvement of solar panel power ratio. In order to illustrate this concept, this paper presents the design and a behaviour modelling of a two axis small scale system for future didactical applications. The principle of tracking is described. Mathematical description is done and a mixed SPICE modelling of the system, including geometrical, optical, electronic linear and non-linear aspects is built. Simulations results are analysed. Practical mechanical and electronic designs are detailed, before conclusion. This small scale solar tracking system is now installed in a eco-friendly small scale house model.


INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 81
Author(s):  
Adhy Prayitno ◽  
Muhammad Irvan ◽  
Sigit Nurharsanto ◽  
Wahyu Fajar Yantoa

Observations and measurements have been conducted towards a solar panel electric power output that is utilized by a solar tracking system. The electrical power output depends on the position of the sun and time and the direction of the panel surface against the angle of the incident light. For power optimization, the solar panel surface should always be directed perpendicular to the direction of the sunlight falling to the surface of the panel. The application of the solar tracking system controlled by a micro controller gives the expected results. The electrical power output of a static solar panel mounted on a fixed position becomes the benchmark of the output electric power value in this study. The measurement results of the electric power output of the solar panel with sun tracking system shows a significant increase in sunny weather conditions.The average increase of that is about 57.3%.Keywords: LDR, micro controller, optimal power output, performance improvment, sun tracking,


Author(s):  
Yasir Hashim Naif

Green and clean energy depends meanly on the Solar energy, especially at urban area. This paper presents the Arduino-based new design of dual-axis solar tracking system with high-efficiency using through the use of five-point sunlight sensors. The main objective of this research is to convert the maximum sunlight to electrical power by auto movement of the solar panel. This research is divided into two stages, first stage related to hardware design and the second related to software development. In hardware design, five light dependent resistors (LDR) have been used for tracking light direction source. Two linear actuators have been used to move the solar panel towards the maximum light intensity direction by using LDR sensors. Moreover, the software is constructed using C++ programming language and uploaded to the Arduino UNO platform. The efficiency of the designed tracking system has been examined and compared with fixed and single axis solar tracker and results shows that the new system has better efficiency than the fixed or single axis  system.


This paper proposes a design of solar tracking system for capturing maximum amount of solar energy by rotating the solar panel. From sun rise to sun set, the sun changes its direction several times due to which the static solar panel fails to capture maximum solar energy throughout the day. Therefore, it is required to develop a system that is capable of generating electrical energy by making use of maximum amount of solar energy. This paper discloses about the rotatable solar tracking system capable of rotating along the sun direction for tracking maximum amount of solar energy. This advanced technology not only utilize the solar energy more effectively but also improves the efficiency of whole system.


Sign in / Sign up

Export Citation Format

Share Document