Growth differentiation factor-5–gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration

2020 ◽  
Vol 13 (1) ◽  
pp. 015010
Author(s):  
Haibin Xu ◽  
Miao Sun ◽  
Chenggui Wang ◽  
Kaishun Xia ◽  
Shining Xiao ◽  
...  
Hand ◽  
2021 ◽  
pp. 155894472110289
Author(s):  
Michael J. Fitzgerald ◽  
Taylor Mustapich ◽  
Haixiang Liang ◽  
Christopher G. Larsen ◽  
Kate W. Nellans ◽  
...  

Background: As hand surgeons, tendon injuries and lacerations are a particularly difficult problem to treat, as poor healing potential and adhesions hamper optimal recovery. Adipose-derived stem cells (ADSCs) have been shown to aid in rat Achilles tendon healing after a puncture defect, and this model can be used to study tendon healing in the upper extremity. We hypothesized that ADSCs cultured with growth differentiation factor 5 (GDF5) and platelet-derived growth factor (PDGF) would improve tendon healing after a transection injury. Methods: Rat Achilles tendons were transected and then left either unrepaired or repaired. Both groups were treated with a hydrogel alone, a hydrogel with ADSCs, or a hydrogel with ADSCs that were cultured with GDF5 and PDGF prior to implantation. Tissue harvested from the tendons was evaluated for gene expression of several genes known to play an important role in successful tendon healing. Histological examination of the tendon healing was also performed. Results: In both repaired and unrepaired tendons, those treated with ADSCs cultured with GDF5/PDGF prior to implantation showed the best tendon fiber organization, the smallest gaps, and the most organized blood vessels. Treatment with GDF5/PDGF increased expression of the protenogenesis gene SOX9, promoted cell-to-cell connections, improved cellular proliferation, and enhanced tissue remodeling. Conclusions: Adipose-derived stem cells cultured with GDF5/PDGF prior to implantation can promote tendon repair by improving cellular proliferation, tenogenesis, and vascular infiltration. This effect results in a greater degree of organized tendon healing.


2020 ◽  
Vol 21 (16) ◽  
pp. 5905
Author(s):  
Maria Camilla Ciardulli ◽  
Luigi Marino ◽  
Erwin Pavel Lamparelli ◽  
Maurizio Guida ◽  
Nicholas Robert Forsyth ◽  
...  

Mesenchymal stem cells derived from human bone marrow (hBM-MSCs) are utilized in tendon tissue-engineering protocols while extra-embryonic cord-derived, including from Wharton’s Jelly (hWJ-MSCs), are emerging as useful alternatives. To explore the tenogenic responsiveness of hBM-MSCs and hWJ-MSCs to human Growth Differentiation Factor 5 (hGDF-5) we supplemented each at doses of 1, 10, and 100 ng/mL of hGDF-5 and determined proliferation, morphology and time-dependent expression of tenogenic markers. We evaluated the expression of collagen types 1 (COL1A1) and 3 (COL3A1), Decorin (DCN), Scleraxis-A (SCX-A), Tenascin-C (TNC) and Tenomodulin (TNMD) noting the earliest and largest increase with 100 ng/mL. With 100 ng/mL, hBM-MSCs showed up-regulation of SCX-A (1.7-fold) at Day 1, TNC (1.3-fold) and TNMD (12-fold) at Day 8. hWJ-MSCs, at the same dose, showed up-regulation of COL1A1 (3-fold), DCN (2.7-fold), SCX-A (3.8-fold) and TNC (2.3-fold) after three days of culture. hWJ-MSCs also showed larger proliferation rate and marked aggregation into a tubular-shaped system at Day 7 (with 100 ng/mL of hGDF-5). Simultaneous to this, we explored the expression of pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokines across for both cell types. hBM-MSCs exhibited a better balance of pro-inflammatory and anti-inflammatory cytokines up-regulating IL-1β (11-fold) and IL-10 (10-fold) at Day 8; hWJ-MSCs, had a slight expression of IL-12A (1.5-fold), but a greater up-regulation of IL-10 (2.5-fold). Type 1 collagen and tenomodulin proteins, detected by immunofluorescence, confirming the greater protein expression when 100 ng/mL were supplemented. In the same conditions, both cell types showed specific alignment and shape modification with a length/width ratio increase, suggesting their response in activating tenogenic commitment events, and they both potential use in 3D in vitro tissue-engineering protocols.


Author(s):  
Heather Cleary ◽  
Thomas Barkley ◽  
Adam Goodman ◽  
Michael Payne ◽  
John Virtue ◽  
...  

Lower back pain is one of the most common medical problems in the world [1], affecting between 70% and 85% of the US population at some point during their lives [2]. Disc degeneration is caused by biological changes in the disc, which result in dehydration of the nucleus pulposus (NP). The long term goal of this project is to treat disc degeneration with a tissue engineering strategy for the regeneration of the nucleus pulposus using messechymal stem cells derived from adipose tissue. It has been established in cartilage regeneration studies that cyclic compressive loading of stem cells is beneficial for tissue formation compared to static culture [3–7]. In this work, a bioreactor is being developed that can subject cell-seeded polymeric tissue engineering scaffolds to dynamic compressive forces. Ultimately, the bioreactor will be used to study the effects of different loading parameters on the production of new nucleus pulposus tissue from adipose-derived stem cells.


Sign in / Sign up

Export Citation Format

Share Document