Numerical study of flow control strategies for a simplified square back ground vehicle

2017 ◽  
Vol 49 (3) ◽  
pp. 035502 ◽  
Author(s):  
Yoann Eulalie ◽  
Philippe Gilotte ◽  
Iraj Mortazavi
2015 ◽  
Vol 145 ◽  
pp. 292-303 ◽  
Author(s):  
Jonathan McNally ◽  
Erik Fernandez ◽  
Gregory Robertson ◽  
Rajan Kumar ◽  
Kunihiko Taira ◽  
...  

2002 ◽  
Vol 124 (2) ◽  
pp. 433-443 ◽  
Author(s):  
Othon K. Rediniotis ◽  
Jeonghwan Ko ◽  
Andrew J. Kurdila

While the potential for the use of synthetic jet actuators to achieve flow control has been noted for some time, most of such flow control studies have been empirical or experimental in nature. Several technical issues must be resolved to achieve rigorous, model-based, closed-loop control methodologies for this class of actuators. The goal of this paper is consequently two-fold. First, we seek to derive and evaluate model order reduction methods based on proper orthogonal decomposition that are suitable for synthetic jet actuators. Second, we seek to derive rigorously stable feedback control laws for the derived reduced order models. The realizability of the control strategies is discussed, and a numerical study of the effectiveness of the reduced order models for two-dimensional flow near the jet exit is summarized.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
G. Minelli ◽  
S. Krajnović ◽  
B. Basara

This work presents an application of the partially averaged Navier–Stokes (PANS) equations for an external vehicle flow. In particular, the flow around a generic truck cabin is simulated. The PANS method is first validated against experiments and resolved large eddy simulation (LES) on two static cases. As a consequence, PANS is used to study the effect of an active flow control (AFC) on a dynamic oscillating configuration. The oscillation of the model represents a more realistic ground vehicle flow, where gusts (of different natures) define the unsteadiness of the incoming flow. In the numerical study, the model is forced to oscillate with a yaw angle 10 deg > β > –10 deg and a nondimensional frequency St = fW/Uinf = 0.1. The effect of the periodic motion of the model is compared with the quasi-static flow condition. At a later stage, the dynamic configuration is actuated by means of a synthetic jet boundary condition. Overall, the effect of the actuation is beneficial. The actuation of the AFC decreases drag, stabilizes the flow, and reduces the size of the side recirculation bubble.


1988 ◽  
Vol 110 (3) ◽  
pp. 230-232
Author(s):  
C. Saltiel

A comparative study of the yearly performance of multistage solar collector systems, (comprised of more than one collector type) with a single on/off flow control strategy for all the collectors and separate on/off controls for each collector stage, is performed. Detailed numerical simulations under a range of climatic conditions showed that there is little advantage in using individual collector controls over a single on/off control strategy when the systems operate at low collector thresholds, but differences in system performance can be quite significant at high threshold values. In addition, the choice of the single control strategy (i.e., which collector the strategy is based on) at low thresholds is not critical in terms of system performance.


Author(s):  
T Rajesh Senthil Kumar ◽  
Mohini Priya Kolluri ◽  
V R Gopal Subramaniyan ◽  
A D Sripathi

Sign in / Sign up

Export Citation Format

Share Document